Artificial Intelligence I: Meta-Heuristics and Games in Java

BY
Udemy

Mode

Online

Fees

₹ 449 2299

Quick Facts

particular details
Medium of instructions English
Mode of learning Self study
Mode of Delivery Video and Text Based

Course and certificate fees

Fees information
₹ 449  ₹2,299
certificate availability

Yes

certificate providing authority

Udemy

The syllabus

Introduction

Why Should You Learn Artificial Intelligence?

  • What is AI good for?

### PATHFINDING ALGORITHMS (GRAPHS) ###

  • Why to consider graph algorithms?

Breadth-First Search (BFS)

  • What is Breadth-First Search?
  • Breadth-first search implementation
  • Applications of breadth-first search
  • Breadth-First Search Quiz

Depth-First Search (DFS)

  • What is depth-first search?
  • Depth-first search implementation I - with stack
  • Depth-first search implementation II - with recursion
  • Depth-first search and stack memory visualization
  • Memory comparison of graph traversal algorithms
  • Applications of depth-first search
  • Depth-First Search Quiz

Course Challenge #1 - Maze Escape

  • Maze problem introduction
  • Course challenge #1 - maze problem
  • Maze problem implementation
  • Maze problem stack memory visualization

Iterative Deepening Depth-First Search (IDDFS)

  • Enhanced search algorithms introduction (IDDFS)
  • Iterative deepening depth-first search (IDDFS) implementation
  • Enhanced Search Quiz

A* Search Algorithm

  • A* search introduction
  • A* search illustration
  • A* search implementation I
  • A* search implementation II
  • A* search implementation III
  • Path finding algorithms comparison
  • A* Search Quiz

### OPTIMIZATION ###

  • Brute-force method
  • Brute-force method implementation
  • Hill climbing method
  • Hill climbing method implementation
  • Optimization Quiz

### META-HEURISTICS

  • Heuristics and meta-heuristics
  • Heuristics Quiz

Simulated Annealing?

  • What is simulated annealing?
  • Simulated Annealing Quiz

Simulated Annealing Implementation - Continuous Function

  • Simulated annealing - function extremum I
  • Simulated annealing - function extremum II
  • Simulated annealing - function extremum III

Simulated Annealing Implementation - Combinatorial Optimization

  • What is the travelling salesman problem?
  • Travelling salesman problem I - city
  • Travelling salesman problem II - tour
  • Travelling salesman problem III - annealing algorithm
  • Travelling salesman problem IV - testing

Genetic Algorithms

  • Genetic algorithms introduction - basics
  • Genetic algorithms introduction - chromosomes
  • Genetic algorithms introduction - crossover
  • Genetic algorithms introduction - mutation
  • Genetic algorithms introduction - selection
  • Genetic algorithms introduction - the algorithm
  • What is elitism?
  • Advantages and limitations of genetic algorithms
  • Genetic Algorithms Quiz

Genetic Algorithm Implementation - Simple Example

  • Genetic algorithm implementation I - individual
  • Genetic algorithm implementation II - population
  • Genetic algorithm implementation III - the algorithm
  • Genetic algorithm implementation IV - testing
  • Genetic algorithm implementation V - function optimum

Course challenge #2 - knapsack problem

  • Knapsack problem introduction
  • Course challenge #2 - knapsack problem
  • Knapsack problem with genetic algorithms

Particle Swarm Optimization

  • What is swarm intelligence?
  • Particle swarm optimization introduction I - basics
  • Particle swarm optimization introduction II - the algorithm
  • Exploration and exploitation trade-off
  • Particle Swarm Optimization Quiz

Particle Swarm Optimization - Simple Example

  • Particle swarm optimization implementation I - particle
  • Particle swarm optimization implementation II - initialize
  • Particle swarm optimization implementation III - the algorithm
  • Particle swarm optimization implementation IV - testing

### TWO PLAYER GAMES ###

  • Game trees introduction
  • Two Player Games Quiz

Minimax Algorithm - Game Engines

  • Minimax algorithm introduction - basics
  • Minimax algorithm introduction - the algorithm
  • Minimax algorithm introduction - relation to tic-tac-toe
  • Alpha-beta pruning introduction
  • Alpha-beta pruning example
  • Chess problem
  • Game Engines Quiz

Tic-Tac-Toe Game

  • About the game
  • Cell
  • Constants and Player
  • Game implementation I
  • Game implementation II
  • Board implementation I
  • Board implementation II - isWinning()
  • Board implementation III
  • Minimax algorithm
  • Minimax algorithm revisited
  • Running tic-tac-toe
  • Minimax algorithm stack memory visualization

Algorhyme FREE Algorithms Visualizer App

  • Algorhyme - Algorithms and Data Structures

Course Materials (Downloads)

  • Course materials

Articles

Popular Articles

Latest Articles

Trending Courses

Popular Courses

Popular Platforms

Learn more about the Courses