Deep Learning with PyTorch for Medical Image Analysis

BY
Udemy

Mode

Online

Fees

₹ 599 4099

Quick Facts

particular details
Medium of instructions English
Mode of learning Self study
Mode of Delivery Video and Text Based

Course and certificate fees

Fees information
₹ 599  ₹4,099
certificate availability

Yes

certificate providing authority

Udemy

The syllabus

Introduction

  • COURSE OVERVIEW LECTURE - PLEASE DO NOT SKIP!
  • Link to Download the Course Files
  • Installation and Environment Setup
  • Installation without yml file
  • Course Curriculum

Crash Course: Numpy

  • Introduction to Numpy
  • NumPy Arrays
  • NumPy Arrays Part Two
  • NumPy Index Selection
  • NumPy Operations
  • NumPy Exercises
  • NumPy Exercise - Solutions

Machine Learning Concepts Overview

  • What is Machine Learning
  • Supervised Learning
  • Overfitting
  • Evaluating Performance - Classification Error Metrics
  • Evaluating Performance - Regression Error Metric

PyTorch Basics

  • PyTorch Basics Introduction
  • Tensor Basics
  • Tensor Basics-Part Two
  • Tensor Operations
  • Tensor Operations-Part Two
  • PyTorch Basics - Exercise
  • PyTorch Basics - Exercise Solutions

CNN - Convolutional Neural Networks

  • Introduction to CNNs
  • Understanding the MNIST data set
  • ANN with MNIST - Part One - Data
  • ANN with MNIST - Part Two - Creating the Network
  • IMPORTANT: Library Difference between video and notebook
  • ANN with MNIST - Part Three - Training
  • ANN with MNIST - Part Four - Evaluation
  • Image Filters and Kernels
  • Convolutional Layers
  • Pooling Layers
  • MNIST Data Revisited
  • MNIST with CNN - Code Along - Part One
  • MNIST with CNN - Code Along - Part Two
  • MNIST with CNN - Code Along - Part Three
  • Why do we need GPUs?
  • Using GPUs for PyTorch

Medical Imaging - A Short Introduction

  • Introduction
  • Overview: X-RAY
  • Overview: CT
  • Overview: MRI
  • Overview: PET
  • Recap: Medical Imaging

Data Formats in Medical Imaging

  • Introduction
  • DICOM
  • DICOM-in-Python
  • Recap: DICOM
  • NIfTI
  • NIfTI-in-Python
  • Recap:NIfTI
  • Preprocessing
  • Preprocessing-in-Python-Part-1
  • Preprocessing-in-Python-Part-2
  • Recap:Preprocessing

Pneumonia - Classification

  • Introduction
  • Preprocessing
  • Train-01-Data-Loading
  • Train-02-Model-Creation
  • Train-03-Trainer
  • Train-04-Evaluation
  • Interpretability

Cardiac-Detection

  • Introduction
  • Preprocessing
  • Dataset-Part-1
  • Dataset-Part-2
  • Train-01-Data-Loading
  • Train-02-Model-Creation
  • Train-03-Evaluation

Atrium-Segmentation

  • Introduction
  • Preprocessing-01-Visualization
  • Preprocessing-02-Processing
  • Dataset-01-Dataset-Creation
  • Dataset-02-Dataset-Validation
  • UNet
  • Train-01-Data-Loading-and-Loss
  • Train-02-Model-Creation
  • Train-03-Evaluation

Capstone-Project: Lung Tumor Segmentation

  • Introduction
  • Overview
  • Oversampling
  • Hint - RuntimeError: expected scalar type Double but found Float
  • Discussion

3D Liver and Liver Tumor Segmentation

  • Introduction
  • Data-Visualization
  • Model
  • Train-01-TorchIO-Dataset
  • Train-02-Model-Creation
  • Train-03-Evaluation

BONUS SECTION: THANK YOU!

  • BONUS LECTURE

Instructors

Mr Jose Portilla
Head of Data Science
Udemy

Other Bachelors, M.S

Trending Courses

Popular Courses

Popular Platforms

Learn more about the Courses