10 Views

Question : A clock tower stands at the crossing of two roads which point in the north-south and the east-west directions. $P, Q, R$, and $S$ are points on the roads due north, east, south, and west respectively, where the angles of elevation of the top of the tower are respectively, $\alpha, \beta, \gamma$ and $\delta$. Then $\left(\frac{\mathrm{PQ}}{\mathrm{RS}}\right)^2$ is equal to:

Option 1: $\frac{\tan ^2 \alpha+\tan ^2 \beta}{\tan ^2 \gamma+\tan ^2 \delta}$

Option 2: $\frac{\cot ^2 \alpha+\cot ^2 \beta}{\cot ^2 \gamma+\cot ^2 \delta}$

Option 3: $\frac{\cot ^2 \alpha+\cot ^2 \delta}{\cot ^2 \beta+\cot ^2 \gamma}$

Option 4: $\frac{\tan ^2 \alpha+\tan ^2 \delta}{\tan ^2 \beta+\tan ^2 \gamma}$


Team Careers360 6th Jan, 2024
Answer (1)
Team Careers360 14th Jan, 2024

Correct Answer: $\frac{\cot ^2 \alpha+\cot ^2 \beta}{\cot ^2 \gamma+\cot ^2 \delta}$


Solution :
Let K be the point on the top of the tower and the height of the clock tower $OK$ be $h$ cm
$OK$ is perpendicular to $PR$ and $SQ$.
In Δ$POK$,
$\tan α = \frac{OK}{OP}$
⇒ $OP = \frac{h}{\tan α}$
⇒ $OP = h \cot α$
Similarly, In ΔQOK
$\tan β = \frac{OK}{OQ}$
⇒ $OQ = \frac{h}{\tan β}$
⇒ $OQ = h \cot β$
In $ΔPOQ$ formed by joining $P$ and $Q$, $OP$ is perpendicular to $OQ$, and then
⇒ $PQ^2 = OP^2 + OQ^2$
⇒ $PQ^2 = h^2 \cot^2 α + h^2 \cot^2 β$
⇒ $PQ^2 = h^2 (\cot^2 α + \cot^2 β)$
Similarly,
$RS^2 = h^2 (\cot^2 γ + \cot^2 δ)$
⇒ $(\frac{PQ}{RS})^2 = \frac{h^2 (\cot^2 α + \cot^2 β)}{h^2 (\cot^2 γ + \cot^2 δ)}$
⇒ $(\frac{PQ}{RS})^2 = \frac{\cot^2 α + \cot^2 β}{\cot^2 γ + \cot^2 δ}$
Hence, the correct answer is $\frac{\cot^2 α + \cot^2 β}{\cot^2 γ + \cot^2 δ}$.

Know More About

Related Questions

TOEFL ® Registrations 2024
Apply
Accepted by more than 11,000 universities in over 150 countries worldwide
Manipal Online M.Com Admissions
Apply
Apply for Online M.Com from Manipal University
View All Application Forms

Download the Careers360 App on your Android phone

Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile

150M+ Students
30,000+ Colleges
500+ Exams
1500+ E-books