evaluate integration of x^2sinx with respect to x
Dear Aspirant
I=∫x^2sinx.dx
 
  
   Applying integration by part,
   
   I=x^2∫sinx.dx−∫[dxd(x^2)∫sindx]dx
   
   =x^2(−cosx)−2∫x(−cosx).dx
   
    
   
  
  =−x^2cosx+2∫xcosxdx
  
  Again applying integration by parts
  
  I=−x^2cosx+2[x∫cosx.dx−∫dxd(x)∫cosx.dx]
  
  =−x^2cosx+2[xsinx−∫sinx.dx
  
   
    ]
    
   
   I=−x2cosx+2xsinx+2cosx+c
   
   
  
 
i hope it will help you
Thank you
 
																   
																 
								




 
                
             
                    
                 
								 
								 
								 
								 
								