Question : If a, b, c are real and $a^{2}+b^{2}+c^{2}=2(a-b-c)-3, $ then the value of $2a-3b+4c$ is:
Option 1: –1
Option 2: 0
Option 3: 1
Option 4: 2
New: SSC CHSL Tier 2 answer key released | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 1
Solution : Given: $a^{2}+b^{2}+c^{2}=2(a-b-c)-3$. We can simplify the above equation as follows: ⇒ $a^{2}+b^{2}+c^{2}=2a-2b-2c-3$ ⇒ $a^{2}-2a+1+b^{2}+2b+1+c^{2}+2c+1=0$ ⇒ $(a-1)^{2}+(b+1)^{2}+(c+1)^{2}=0$ $\therefore a=1, b=-1,c=-1$ Putting the values of $a, b, c$ in $2a-3b+4c$, we get: $2+3-4=1$ Hence, the correct answer is 1.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : If $\left (2a-1 \right )^{2}+\left (4b-3 \right)^{2}+\left (4c+5 \right)^{2}=0$, then the value of $\frac{a^{3}+b^{3}+c^{3}-3abc}{a^{2}+b^{2}+c^{2}}$ is:
Question : If $a+b+c=0$ and $a^2+b^2+c^2=40$, then what is the value of $a b+b c+c a$?
Question : The value of $(x^{b+c})^{b–c}(x^{c+a})^{c–a}(x^{a+b})^{a–b}$, where $(x\neq 0)$ is:
Question : If $a^2+b^2+c^2=2(a-b-c)-3$, then the value of $(a+b+c)$ is:
Question : If $2a+3b=14$ and $2a-3b=10$, then find the value of ' $ab$ '.
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile