Question : If $a$ and $b$ are rationals and $a\sqrt{2}+b\sqrt{3}=\sqrt{98}+\sqrt{108}-\sqrt{48}-\sqrt{72}$ then, the values of $a$ and $b$ respectively, are:
Option 1: 1, 2
Option 2: 1, 3
Option 3: 2, 1
Option 4: 2, 3
New: SSC CHSL Tier 2 answer key released | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 1, 2
Solution : $a\sqrt{2}+b\sqrt{3} = \sqrt{98}+\sqrt{108}-\sqrt{48}-\sqrt{72}$ $=\sqrt{2\times49}+\sqrt{36\times3}-\sqrt{16\times3}-\sqrt{36\times2}$ $= 7\sqrt{2}+6\sqrt{3}-4\sqrt{3}-6\sqrt{2}$ ⇒ $a\sqrt{2}+b\sqrt{3} = \sqrt{2}+2\sqrt{3}$ ⇒ $a=1$ and $b=2$ Hence, the correct answer is 1, 2.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : If $\sqrt x-\sqrt y=1$ , $\sqrt x+\sqrt y=17$, then $\sqrt {xy}=?$
Question : If one diagonal of a rhombus is equal to its side, then the diagonals of the rhombus are in the ratio of:
Question : If $x^{4}+\frac{1}{x^{4}}=119$, then the values of $x^{3}+\frac{1}{x^{3}}$ are:
Question : If $A=30^{\circ}$, then find the value of $\frac{(2 \tan A)}{\left(1-\tan^2 A\right)}$.
Question : If $\sin A-\cos A=\frac{\sqrt{3}-1}{2}$, then the value of $\sin A\cdot \cos A$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile