Question : If $3a=4b=6c$ and $a+b+c=27\sqrt{29}$, then $\sqrt{a^{2}+b^{2}+c^{2}}$ is equal to:
Option 1: 87
Option 2: $3\sqrt{29}$
Option 3: 82
Option 4: 83
Latest: SSC CGL 2024 final Result Out | SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL Tier 1 Scorecard 2024 Released | SSC CGL complete guide
Suggested: Month-wise Current Affairs | Upcoming Government Exams
Correct Answer: 87
Solution : Given: $3a=4b=6c$ ⇒ $3a=6c$ ⇒ $a=2c$ $4b=6c$ ⇒ $b=\frac{3}{2}c$ Putting these values in the equation, we get, $a+b+c=27\sqrt{29}$ ⇒ $2c+\frac{3}{2}c+c=27\sqrt{29}$ ⇒ $\frac{9}{2}c=27\sqrt{29}$ ⇒ $c=6\sqrt{29}$ now we have to find $\sqrt{a^2+b^2+c^2}$, then: $\sqrt{a^2+b^2+c^2}=\sqrt{(a+b+c)^2–2(ab+bc+ca)}$ Putting the values ⇒ $\sqrt{a^2+b^2+c^2}=\sqrt{(27\sqrt{29})^2–2(2c×\frac{3}{2}c+\frac{3}{2}c×c+c×2c)}$ ⇒ $\sqrt{a^2+b^2+c^2}=\sqrt{(27\sqrt{29})^2–2(3c^2+\frac{3}{2}c^2+2c^2)}$ ⇒ $\sqrt{a^2+b^2+c^2}=\sqrt{(729×29)–2×\frac{13}{2}c^2}$ ⇒ $\sqrt{a^2+b^2+c^2}=\sqrt{(729×29)–13c^2}$ ⇒ $\sqrt{a^2+b^2+c^2}=\sqrt{21141–13(6\sqrt{29})^2}$ ⇒ $\sqrt{a^2+b^2+c^2}=\sqrt{21141–13(36×29)}$ ⇒ $\sqrt{a^2+b^2+c^2}=\sqrt{21141–13572}$ ⇒ $\sqrt{a^2+b^2+c^2}=\sqrt{7569}$ $\therefore \sqrt{a^2+b^2+c^2}=87$ Hence, the correct answer is 87.
Candidates can download this ebook to know all about SSC CGL.
Admit Card | Eligibility | Application | Selection Process | Preparation Tips | Result | Answer Key
Question : If $a=\frac{1}{a - 5}(a>0)$, then the value of $a+\frac{1}{a}$ is:
Option 1: $\sqrt{29}$
Option 2: $–\sqrt{27}$
Option 3: $-\sqrt{29}$
Option 4: $\sqrt{27}$
Question : If $c+ \frac{1}{c} =\sqrt{3}$, then the value of $c^{3}+ \frac{1}{c^{3}}$ is equal to:
Option 1: 0
Option 2: $\sqrt[3]{3}$
Option 3: $\frac{1}{\sqrt{3}}$
Option 4: $\sqrt[6]{3}$
Question : If $\frac{3a+4b}{3c+4d}=\frac{3a-4b}{3c-4d}$, then:
Option 1: $ab=cd$
Option 2: $ad=bc$
Option 3: $ac=bd$
Option 4: $a=b=c\neq d$
Question : If $a\sin\theta+b\cos\theta=c$, then $a\cos\theta-b\sin\theta$ is equal to:
Option 1: $\pm \sqrt{a+b-c}$
Option 2: $\pm \sqrt{a^{2}+b^{2}+c^{2}}$
Option 3: $\pm \sqrt{a^{2}+b^{2}-c^{2}}$
Option 4: $\pm \sqrt{c^{2}+a^{2}-b^{2}}$
Question : If $\sqrt{1+\frac{\sqrt{3}}{2}}-\sqrt{1-\frac{\sqrt{3}}{2}}=c$, then the value of $\mathrm{c}$ is:
Option 1: 1
Option 2: 4
Option 3: 3
Option 4: 2
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile