Question : If $\left (a+b \right):\left (b+c \right):\left (c+a \right)= 6:7:8$ and $\left (a+b+c \right) = 14,$ then value of $c$ is:
Option 1: 6
Option 2: 7
Option 3: 8
Option 4: 14
New: SSC CHSL Tier 2 answer key released | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 6
Solution : Given: $(a + b) : (b + c) : (c + a) = 6 : 7 : 8$ $a+b+c = 14$ Let be $a+b = 6x$ , $b+c = 7x$ and $c+a = 8x$ $\therefore 2(a+b+c)=6x+7x+8x$ ----------------------------(1) ⇒ $(a+b+c)=\frac{6x+7x+8x}{2}$ ⇒ $6x+c = 10.5x$ $\therefore c = 10.5x-6x=4.5x$ From equation 1 we get, $2×14=6x+7x+8x$ [as $a+b+c = 14$ ] $\therefore x = \frac{28}{21}=\frac{4}{3}$ $\therefore c = 4.5\times \frac{4}{3}= 6$ Hence, the correct answer is 6.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : If A : B = 2 : 3, B : C = 6 : 7, C : D = 14 : 3, then find A : B : C : D.
Question : If $\left (2a-1 \right )^{2}+\left (4b-3 \right)^{2}+\left (4c+5 \right)^{2}=0$, then the value of $\frac{a^{3}+b^{3}+c^{3}-3abc}{a^{2}+b^{2}+c^{2}}$ is:
Question : If $\small c+\frac{1}{c}=3$, then the value of $\left (c-3 \right )^{7}+\frac{1}{c^{7}}$ is:
Question : The value of expression $4\left(\sin ^6 A+\cos ^6 A\right)-6\left(\sin ^4 A+\cos ^4 A\right)+8$ is:
Question : If $\left(z+\frac{1}{z}\right)=4$, then what will be the value of $\frac{1}{2}\left(z^2+\frac{1}{z^2}\right)$?
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile