16 Views

Question : If $\theta$ be an acute angle and $\tan \theta+\cot \theta=2$, then the value of $2 \tan ^2 \theta+\cot ^2 \theta+\tan ^4 \theta \cot ^4 \theta$ is:

Option 1: 4

Option 2: 2

Option 3: 3

Option 4: 6


Team Careers360 16th Jan, 2024
Answer (1)
Team Careers360 22nd Jan, 2024

Correct Answer: 4


Solution : Given, $\tan \theta+\cot \theta=2$
We know, $\cot\theta=\frac{1}{\tan\theta}$
⇒ $\tan\theta+\frac{1}{\tan\theta}=2$
⇒ $\tan^2\theta+1=2\tan\theta$
⇒ $\tan^2\theta+1-2\tan\theta=0$
⇒ $(\tan\theta-1)^2=0$
⇒ $\tan\theta-1=0$
⇒ $\tan\theta = 1$ [As $\theta$ is an acute angle]
⇒ $\cot\theta=1$
Now consider, $2 \tan ^2 \theta+\cot ^2 \theta+\tan ^4 \theta \cot ^4 \theta$
= $2\times(1)^2+1^2+(1)^4\times(1)^4$
= $2+1+1=4$
Hence, the correct answer is 4.

How to crack SSC CHSL

Candidates can download this e-book to give a boost to thier preparation.

Download Now

Know More About

Related Questions

Manipal Online M.Com Admissions
Apply
Apply for Online M.Com from Manipal University
View All Application Forms

Download the Careers360 App on your Android phone

Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile

150M+ Students
30,000+ Colleges
500+ Exams
1500+ E-books