Question : If for a non-zero $x$, $3x^{2}+5x+3=0,$ then the value of $x^{3}+\frac{1}{x^{3}}$ is:
Option 1: $\frac{10}{27}$
Option 2: $-\frac{10}{27}$
Option 3: $\frac{2}{3}$
Option 4: $-\frac{2}{3}$
Correct Answer: $\frac{10}{27}$
Solution : Given: $3x^{2}+5x+3=0$ $3x^2 + 3=-5x$ Dividing by $3x$ on both sides, $x+\frac{1}{x} = -\frac{5}{3}$ As $(a+b)^3 = a^3 + b^3 +3ab(a+b)$ $\therefore$ $x^3 + \frac{1}{x^3} = (\frac{-5}{3})^3 - 3\times \frac{-5}{3}$ = $\frac{-125}{27}+5$ = $\frac{–125+135}{27}=\frac{10}{27}$ Hence, the correct answer is $\frac{10}{27}$.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : If $x^{2}+1=2x$, then the value of $\frac{x^{4}+\frac{1}{x^{2}}}{x^{2}-3x+1}$ is:
Question : If $\frac{3x-1}{x}+\frac{5y-1}{y}+\frac{7z-1}{z}=0$, what is the value of $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}?$
Question : If $x^2-3x+1=0$, what is the value of $(x^4+\frac{1}{x^4})$?
Question : What is the value of $\frac{x^2-x-6}{x^2+x-12}÷\frac{x^2+5x+6}{x^2+7x+12}$?
Question : if $x+\frac{1}{x}=2$, then the value of $x^4+\frac{1}{x^4}$=__________.
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile