Question : If [n] denotes the greatest integer < n and (n) denotes the smallest integer > n, where n is any real number, then the value of $(1\frac{1}{5})×[1\frac{1}{5}]-(1\frac{1}{5})+[\frac{1}{5}]+(1.5)$ is:
Option 1: 1.5
Option 2: 2
Option 3: 2.5
Option 4: 3.5
Correct Answer: 2
Solution : $(1\frac{1}{5}) × [1\frac{1}{5}] – (1\frac{1}{5}) + [\frac{1}{5}] + (1.5)$ = ($\frac{6}{5}) × [\frac{6}{5}] – (\frac{6}{5}) + [\frac{1}{5}] + (1.5)$ = (1.2) × [1.2] – (1.2) + [0.2] +(1.5) Applying floor and ceiling functions = 2 × 1 – 2 + 0 + 2 = 2 – 2 + 2 = 2 Hence, the correct answer is 2.
Application | Eligibility | Selection Process | Result | Cutoff | Admit Card | Preparation Tips
Question : Find the value of $\frac{(243)^{\frac{n}{5}}\times 3^{2n+1}}{9^{n}\times 3^{n-1}}$.
Option 1: 3
Option 2: 9
Option 3: 27
Option 4: 4
Question : The value of $\frac{(243)^\frac{n}{5}\times 3^{2n+1}}{9^{n}\times 3^{n-1}}$ is:
Option 3: 6
Option 4: 12
Question : If $1 \frac{1}{3} \div \frac{2}{5} \times \frac{x}{5}=1 \frac{1}{4} \times \frac{2}{3} \div \frac{1}{6}$, then the value of $x$ is:
Option 1: 5.5
Option 2: 7.5
Option 3: 7.0
Option 4: 15
Question : If $\cot \theta=\frac{4}{3}, 0<\theta<\frac{\pi}{2}$, and $5 p \cos ^2 \theta \sin \theta=\cot ^2 \theta$, then the value of $p$ is:
Option 1: $\frac{7}{27}$
Option 2: $\frac{125}{27}$
Option 3: $\frac{5}{27}$
Option 4: $\frac{25}{27}$
Question : The value of $\frac{0.325 \times 0.325+0.175 \times 0.175+25 \times 0.00455}{5 \times 0.0065 \times 3.25-7 \times 0.175 \times 0.025}+\frac{0.5}{1.5}$ is:
Option 1: $3$
Option 2: 0
Option 3: $\frac{7}{3}$
Option 4: $\frac{11}{3}$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile