Question : If $x=(7+3 \sqrt{5})$, then find the value of $x^2+\frac{1}{x^2}$.
Option 1: $ \frac{580+315 \sqrt{5}}{8}$
Option 2: $\frac{799+328 \sqrt{5}}{8}$
Option 3: $\frac{799+315 \sqrt{5}}{12}$
Option 4: $\frac{799+315 \sqrt{5}}{8}$
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\frac{799+315 \sqrt{5}}{8}$
Solution : Given, $x=(7+3 \sqrt{5})$ Squaring both sides, we get, $x^2=(7+3 \sqrt{5})^2$ ⇒ $x^2=49+9\times 5+2\times 7\times 3\sqrt5$ [As $(a+b)^2=a^2+b^2+2ab$] ⇒ $x^2=49+45+42\sqrt5$ ⇒ $x^2=94+42\sqrt5$ And, $\frac{1}{x^2}=\frac{1}{(7+3\sqrt5)^2}=\frac{1}{94+42\sqrt5}$ Rationalising the equation, ⇒ $\frac{1}{x^2}=\frac{1}{94+42\sqrt5}\times\frac{{94-42\sqrt5}}{{94-42\sqrt5}}$ ⇒ $\frac{1}{x^2}=\frac{{94-42\sqrt5}}{(94)^2-(42\sqrt5)^2}$ ⇒ $\frac{1}{x^2}=\frac{{94-42\sqrt5}}{8836-8820}$ ⇒ $\frac{1}{x^2}=\frac{{94-42\sqrt5}}{16}$ ⇒ $\frac{1}{x^2}=\frac{{47-21\sqrt5}}{8}$ Now, $x^2+\frac{1}{x^2}$ Putting the value of $x^2$ and $\frac{1}{x^2}$, we get, = $94+42\sqrt5+\frac{{47-21\sqrt5}}{8}$ = $\frac{752+336\sqrt5+47-21\sqrt5}{8}$ = $\frac{799+315\sqrt5}{8}$ Hence, the correct answer is $\frac{799+315\sqrt5}{8}$.
Candidates can download this e-book to give a boost to thier preparation.
Application | Eligibility | Admit Card | Answer Key | Preparation Tips | Result | Cutoff
Question : If $x=\frac{4\sqrt{15}}{\sqrt{5}+\sqrt{3}}$, the value of $\frac{x+\sqrt{20}}{x–\sqrt{20}}+\frac{x+\sqrt{12}}{x–\sqrt{12}}$ is:
Option 1: $1$
Option 2: $2$
Option 3: $\sqrt{3}$
Option 4: $\sqrt{5}$
Question : If $x=(\sqrt{6}-1)^{\frac{1}{3}}$, then the value of $\left(x-\frac{1}{x}\right)^3+3\left(x-\frac{1}{x}\right)$ is:
Option 1: $\frac{2 \sqrt{6}-6}{5}$
Option 2: $\frac{4 \sqrt{6}-6}{5}$
Option 3: $\frac{4 \sqrt{6}-6}{3}$
Option 4: $\frac{4 \sqrt{3}-6}{5}$
Question : If $x=5–\sqrt{21}$, the value of $\frac{\sqrt{x}}{\sqrt{32–2x}–\sqrt{21}}$ is:
Option 1: $\frac{1}{\sqrt2}(\sqrt{3}–\sqrt{7})$
Option 2: $\frac{1}{\sqrt2}(\sqrt{7}–\sqrt{3})$
Option 3: $\frac{1}{\sqrt2}(\sqrt{7}+\sqrt{3})$
Option 4: $\frac{1}{\sqrt2}(7–\sqrt{3})$
Question : If $x^{4}+\frac{1}{x^{4}}=16$, then what is the value of $x^{2}+\frac{1}{x^{2}}$?
Option 1: $3 \sqrt{2}$
Option 2: $2 \sqrt{2}$
Option 3: $5 \sqrt{2 }$
Option 4: $4 \sqrt{2}$
Question : If $x+\frac{2}{x}=1$, then the value of $\frac{x^2+7x+2}{x^2+13x+2}$ is:
Option 1: $\frac{5}{7}$
Option 2: $\frac{3}{7}$
Option 3: $\frac{4}{7}$
Option 4: $\frac{2}{7}$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile