Question : If $\sec A - \tan A = p$, then find the value of $\sec A$.
Option 1: $\frac{p^2-1}{p^2+1}$
Option 2: $\frac{\mathrm{p}^2+1}{\mathrm{p}^2-1}$
Option 3: $\frac{\mathrm{p}^2+1}{\mathrm{p}}$
Option 4: $\frac{\mathrm{p}^2+1}{2 \mathrm{p}}$
Correct Answer: $\frac{\mathrm{p}^2+1}{2 \mathrm{p}}$
Solution : $\sec A - \tan A = p$ $\frac{1}{\cos A} - \frac{\sin A}{\cos A} = p$ $\frac{(1-\sin A)^2}{(\cos A)^2} = p^2$ $\frac{(1-\sin A)^2}{1-\sin^2 A} = p^2$ $\frac{(1-\sin A)^2}{(1-\sin A)(1+\sin A)} = p^2$ $\frac{1-\sin A}{1+\sin A}= p^2$ $1-\sin A = p^2 + p^2\sin A$ $\sin A =\frac{1-p^2}{1+p^2}$ $\cos A = \sqrt{1-\sin^2 A}$ $= \sqrt{1-(\frac{1-p^2}{1+p^2})^2}$ $=\sqrt{\frac{(1+p^2)^2-(1-p^2)^2}{(1+p^2)^2}}$ $=\sqrt{\frac{(1+p^2+1-p^2)(1+p^2-1+p^2)}{(1+p^2)^2}}$ $=\sqrt{\frac{2×2p^2}{(1+p^2)^2}}$ $=\sqrt{\frac{(2p)^2}{(1+p^2)^2}}$ $= \frac{2p}{1+p^2}$ $\sec A = \frac{1+p^2}{2p}$ Hence, the correct answer is $ \frac{1+p^2}{2p}$.
Application | Eligibility | Selection Process | Result | Cutoff | Admit Card | Preparation Tips
Question : If $\tan A=\frac{2}{5}$, then find the value of $\frac{\sec ^2 A}{\operatorname{cosec}^2 A}$.
Option 1: $\frac{2}{5}$
Option 2: $\frac{4}{25}$
Option 3: $\frac{9}{25}$
Option 4: $\frac{3}{5}$
Question : The speeds of two bodies are in the ratio 2 : 3. If the difference in the time taken to cover 50 m is 10 sec, then find the difference in their speeds.
Option 1: $\frac{8}{9} \mathrm{~m} / \mathrm{sec}$
Option 2: $\frac{5}{6} \mathrm{~m} / \mathrm{sec}$
Option 3: $\frac{6}{5} \mathrm{~m} / \mathrm{sec}$
Option 4: $\frac{7}{5} \mathrm{~m} / \mathrm{sec}$
Question : If $\tan A=\frac{4}{3}, 0 \leq A \leq 90^{\circ}$, then find the value of $\sin A$.
Option 1: $\frac{3}{5}$
Option 2: $1$
Option 3: $\frac{3}{4}$
Option 4: $\frac{4}{5}$
Question : Find the value of $\left(\tan ^2 \theta+\tan ^4 \theta\right)$.
Option 1: $\cot ^2 \theta-\tan ^2 \theta$
Option 2: $\ {\sec}^4 \theta-\ {\sec}^2 \theta$
Option 3: $\ {\sec}^4 \theta-\ {\sec}^4 \theta$
Option 4: $ \ {\sec}^4 \theta+\ {\sec}^2 \theta$
Question : If $\frac{1}{\operatorname{cosec} \theta+1}+\frac{1}{\operatorname{cosec} \theta-1}=2 \sec \theta, 0^{\circ}<\theta<90^{\circ}$, then the value of $\frac{\tan \theta+2 \sec \theta}{\operatorname{cosec} \theta}$ is:
Option 1: $\frac{4+\sqrt{2}}{2}$
Option 2: $\frac{2+\sqrt{3}}{2}$
Option 3: $\frac{4+\sqrt{3}}{2}$
Option 4: $\frac{2+\sqrt{2}}{2}$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile