Question : If $\sqrt{y}=4x$, then $\frac{x^{2}}{y}$ is:
Option 1: $2$
Option 2: $\frac{1}{16}$
Option 3: $\frac{1}{4}$
Option 4: $4$
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\frac{1}{16}$
Solution : Given: $\sqrt{y}=4x$ Squaring on both sides, ⇒ $y = (4x)^2 = 16x^2$ ⇒ $\frac{x^2}{y}$ = $\frac{1}{16}$ Hence, the correct answer is $\frac{1}{16}$.
Candidates can download this e-book to give a boost to thier preparation.
Application | Eligibility | Admit Card | Answer Key | Preparation Tips | Result | Cutoff
Question : If $x=\sqrt{3}-\frac{1}{\sqrt{3}}, y=\sqrt{3}+\frac{1}{\sqrt{3}}$, then the value of $\frac{x^2}{y}+\frac{y^2}{x}$ is:
Option 1: $\sqrt{3}$
Option 2: $3\sqrt{3}$
Option 3: $16\sqrt{3}$
Option 4: $2\sqrt{3}$
Question : If $x^{4}+\frac{1}{x^{4}}=16$, then what is the value of $x^{2}+\frac{1}{x^{2}}$?
Option 1: $3 \sqrt{2}$
Option 2: $2 \sqrt{2}$
Option 3: $5 \sqrt{2 }$
Option 4: $4 \sqrt{2}$
Question : What is the value of $\frac{4x^2+9y^2+12xy}{144}$?
Option 1: $(\frac{x}{3} + \frac{y}{4})^2$
Option 2: $(\frac{x}{3} + y)^2$
Option 3: $(\frac{x}{4} + \frac{y}{6})^2$
Option 4: $(\frac{x}{6} + \frac{y}{4})^2$
Question : If $x^2+y^2=427$ and $xy=202$, then find the value of $\frac{x+y}{x-y}$.
Option 1: $\sqrt{\frac{835}{23}}$
Option 2: $\sqrt{\frac{830}{29}}$
Option 3: $\sqrt{\frac{831}{23}}$
Option 4: $\sqrt{\frac{830}{23}}$
Question : If $x=(\sqrt{6}-1)^{\frac{1}{3}}$, then the value of $\left(x-\frac{1}{x}\right)^3+3\left(x-\frac{1}{x}\right)$ is:
Option 1: $\frac{2 \sqrt{6}-6}{5}$
Option 2: $\frac{4 \sqrt{6}-6}{5}$
Option 3: $\frac{4 \sqrt{6}-6}{3}$
Option 4: $\frac{4 \sqrt{3}-6}{5}$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile