Question : If $r\sin\theta=1$, $r\cos\theta=\sqrt{3}$, then the value of $(\sqrt{3}\tan\theta+1)$ is:
Option 1: $\sqrt{3}$
Option 2: $\frac{1}{\sqrt{3}}$
Option 3: $1$
Option 4: $2$
Latest: SSC CGL 2024 final Result Out | SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL Tier 1 Scorecard 2024 Released | SSC CGL complete guide
Suggested: Month-wise Current Affairs | Upcoming Government Exams
Correct Answer: $2$
Solution : Given: $r\sin\theta=1$, $r\cos\theta=\sqrt{3}$ $⇒\frac{r\sin\theta}{r\cos\theta}=\frac{1}{\sqrt{3}}$ $⇒\tan\theta=\frac{1}{\sqrt{3}}$ $⇒\sqrt{3}\tan\theta=1$ $\therefore\sqrt{3}\tan\theta+1=2$ Hence, the correct answer is $2$.
Candidates can download this ebook to know all about SSC CGL.
Admit Card | Eligibility | Application | Selection Process | Preparation Tips | Result | Answer Key
Question : If $\frac{\sin ^2 \theta}{\cos ^2 \theta-3 \cos \theta+2}=1, \theta$ lies in the first quadrant, then the value of $\frac{\tan ^2 \frac{\theta}{2}+\sin ^2 \frac{\theta}{2}}{\tan \theta+\sin \theta}$ is:
Option 1: $\frac{2 \sqrt{3}}{27}$
Option 2: $\frac{5 \sqrt{3}}{27}$
Option 3: $\frac{2 \sqrt{3}}{9}$
Option 4: $\frac{7 \sqrt{3}}{54}$
Question : If $\cos\theta+\sin\theta=\sqrt{2}\cos\theta$, then $\cos\theta-\sin\theta$ is:
Option 1: $\sqrt{2}\tan\theta$
Option 2: $-\sqrt{2}\cos\theta$
Option 3: $-\sqrt{2}\sin\theta$
Option 4: $\sqrt{2}\sin\theta$
Question : If $2 \cot \theta = 3$, find the value of $\frac{\sqrt{13} \sin \theta – 3 \tan \theta}{3 \tan \theta + \sqrt{13} \cos \theta}$
Option 1: $\frac{1}{\sqrt{13}}$
Option 2: $\frac{2}{\sqrt{13}}$
Option 3: 0
Option 4: $\frac{2}{3}$
Question : If $\sqrt{3} \tan \theta=3 \sin \theta$, then what is the value of $\sin ^2 \theta-\cos ^2 \theta$?
Option 1: $\frac{1}{5}$
Option 2: $\frac{1}{4}$
Option 3: $\frac{1}{2}$
Option 4: $\frac{1}{3}$
Question : If $\tan\theta=1$, then the value of $\frac{8\sin\theta\:+\:5\cos\theta}{\sin^{3}\theta\:–\:2\cos^{3}\theta\:+\:7\cos\theta}$ is:
Option 1: $2$
Option 2: $2\frac{1}{2}$
Option 3: $3$
Option 4: $\frac{4}{5}$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile