Question : If $\tan \theta \cdot \tan 2 \theta=1$, then the value of $\cot 5 \theta$ is:
Option 1: $-1$
Option 2: $1$
Option 3: $-\sqrt{3}$
Option 4: $\sqrt{3}$
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $-\sqrt{3}$
Solution : Given: $\tan \theta \cdot \tan 2 \theta=1$ $⇒\tan2\theta=\cot\theta$ $⇒\tan2\theta=\tan(90°- \theta)$ $⇒2\theta=90°- \theta$ $⇒3\theta=90°$ $\therefore \theta=30°$ $\cot 5\theta=\cot(5×30°)=\cot 150°=\cot(90°+60°)=-\tan60°=-\sqrt3$ Hence, the correct answer is $-\sqrt3$.
Candidates can download this e-book to give a boost to thier preparation.
Application | Eligibility | Admit Card | Answer Key | Preparation Tips | Result | Cutoff
Question : If $\sqrt{3} \tan ^2 \theta-4 \tan \theta+\sqrt{3}=0$, then what is the value of $\tan ^2 \theta+\cot ^2 \theta$?
Option 1: $\frac{4}{3}$
Option 2: $\frac{10}{3}$
Option 3: $3$
Option 4: $\frac{6}{5}$
Question : If $\theta$ be an acute angle and $\tan \theta+\cot \theta=2$, then the value of $2 \tan ^2 \theta+\cot ^2 \theta+\tan ^4 \theta \cot ^4 \theta$ is:
Option 1: 4
Option 2: 2
Option 3: 3
Option 4: 6
Question : If $\sec \theta+\tan \theta=\frac{1}{\sqrt{3}}$, then the positive value of $\cot \theta+\cos \theta$ is:
Option 1: $\frac{3 \sqrt{3}}{2}$
Option 2: $\frac{\sqrt{3}}{2}$
Option 3: $\frac{2}{3 \sqrt{3}}$
Option 4: $\frac{2}{\sqrt{3}}$
Question : If $\tan (90-\theta)=\frac{2}{\sqrt{3}}$, then the value of $2 \sqrt{3} \tan \theta+1$ is:
Option 2: 5
Question : If $\sin\theta+\cos\theta=\sqrt{2}\cos\theta$, then the value of $\cot\theta$ is:
Option 1: $\sqrt{2}+1$
Option 2: $\sqrt{2}-1$
Option 3: $\sqrt{3}-1$
Option 4: $\sqrt{3}+1$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile