Question : If $\sin \theta+\sin ^2 \theta=1$, then the value of $\cos ^2 \theta+\cos ^4 \theta$ is equal to:
Option 1: 5
Option 2: $\frac{1}{2}$
Option 3: $1$
Option 4: $0$
Latest: SSC CGL Tier 1 Result 2024 Out | SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL Tier 1 Scorecard 2024 Released | SSC CGL complete guide
Suggested: Month-wise Current Affairs | Upcoming Government Exams
Correct Answer: $1$
Solution : Given: $\sin \theta+\sin ^2 \theta=1$ Use the trigonometric identity, $\sin^2 \theta+\cos^2 \theta=1$. $\sin \theta+\sin ^2 \theta=1$ ⇒ $\sin \theta=1–\sin ^2 \theta$ ⇒ $\sin \theta=\cos ^2 \theta$ The value of $\cos ^2 \theta+\cos ^4 \theta=\sin \theta+\sin^2 \theta =1$. Hence, the correct answer is 1.
Candidates can download this ebook to know all about SSC CGL.
Admit Card | Eligibility | Application | Selection Process | Preparation Tips | Result | Answer Key
Question : If $\frac{\sin \theta+\cos \theta}{\sin \theta-\cos \theta}=\frac{3}{2}$, then the value of $\sin ^4 \theta-\cos ^4 \theta$ is:
Question : If $\tan\theta=1$, then the value of $\frac{8\sin\theta\:+\:5\cos\theta}{\sin^{3}\theta\:–\:2\cos^{3}\theta\:+\:7\cos\theta}$ is:
Question : If $\frac{(3 \sin \theta-\cos \theta)}{(\cos \theta+\sin \theta)}=1$, then the value of $\cot \theta$ is:
Question : If $\sin \theta-\cos \theta=0$, then find the value of $\left(\sin^3 \theta-\cos^3 \theta\right)$.
Question : If $x\sin^{3}\theta +y\cos^{3}\theta=\sin\theta\cos\theta$ and $x\sin\theta-y\cos\theta=0$, then the value of $\left ( x^{2}+y^{2} \right )$ equals:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile