Question : If $\left(5 \sqrt{5} x^3-3 \sqrt{3} y^3\right) \div(\sqrt{5} x-\sqrt{3} y)=\left(A x^2+B y^2+C x y\right)$, then what is the value of $(3 A-B-\sqrt{15} C)$?
Option 1: –3
Option 2: –5
Option 3: 8
Option 4: 12
Correct Answer: –3
Solution : Given: $\left(5 \sqrt{5} x^3-3 \sqrt{3} y^3\right) \div(\sqrt{5} x-\sqrt{3} y)=\left(A x^2+B y^2+C x y\right)$ ⇒ $\frac{(5 \sqrt{5} x^3-3 \sqrt{3} y^3)}{(\sqrt{5} x-\sqrt{3} y)}=\left(A x^2+B y^2+C x y\right)$ ⇒ $\frac{(x\sqrt{5})^3-(y\sqrt{3})^3)}{(\sqrt{5} x-\sqrt{3} y)}=(A x^2+B y^2+C x y)$ ⇒ $\frac{(\sqrt{5}x-\sqrt{3}y)(5x^2+\sqrt{15}xy+3y^2)}{(\sqrt{5} x-\sqrt{3} y)}=(A x^2+B y^2+C x y)$ ⇒ $5x^2+\sqrt{15}xy+3y^2=A x^2+B y^2+C x y$ On comparing, ⇒ $A=5$ ⇒ $B=3$ ⇒ $C=\sqrt{15}$ Now, $(3 A-B-\sqrt{15} C)$ Putting the values, we get: = $(3\times5-3-\sqrt{15}\times\sqrt{15})$ = $(15-3-15)$ = –3 Hence, the correct answer is –3.
Application | Eligibility | Selection Process | Result | Cutoff | Admit Card | Preparation Tips
Question : If $\left(5 \sqrt{5} x^3-3 \sqrt{3} y^3\right) \div(\sqrt{5} x-\sqrt{3} y)=\left(A x^2+B y^2+C x y\right)$, then the value of $(3 A+B-\sqrt{15} C)$ is:
Option 1: 8
Option 2: 5
Option 3: 3
Question : If $x+y+z=17, x y z=171$ and $x y+y z+z x=111$, then the value of $\sqrt[3]{\left(x^3+y^3+z^3+x y z\right)}$ is:
Option 1: –64
Option 2: 4
Option 3: 0
Option 4: –4
Question : If $\left (\sqrt{5} \right)^{7}\div \left (\sqrt{5} \right)^{5}=5^{p},$ then the value of $p$ is:
Option 1: $5$
Option 2: $2$
Option 3: $\frac{3}{2}$
Option 4: $1$
Question : If $x^2-3 x+1=0$, then the value of $\left(x^4+\frac{1}{x^2}\right) \div\left(x^2+1\right)$ is:
Option 1: 5
Option 2: 6
Option 3: 9
Option 4: 7
Question : If $x^2+\frac{1}{x^2}=\frac{7}{4}$ for $x>0$, what is the value of $(x^3+\frac{1}{x^3})$?
Option 1: $\frac{3\sqrt{3}}{5}$
Option 2: $\frac{3\sqrt{15}}{5}$
Option 3: $\frac{3\sqrt{15}}{8}$
Option 4: $\frac{3\sqrt{5}}{8}$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile