Question : In a triangle$\frac{AB}{AC}=\frac{BD}{DC}$, $\angle$B = 70° and $\angle$C = 50°, then $\angle$BAD =?
Option 1: 60°
Option 2: 20°
Option 3: 30°
Option 4: 50°
Correct Answer: 30°
Solution : Given: $\frac{AB}{AC}=\frac{BD}{DC}$ $\angle$A = 180° – $\angle$B – $\angle$C = 180° – 70° – 50° = 60° We know that if a line through one of the vertex of a triangle divides the opposite side in the ratio of the other two sides, the line bisects the angle at the vertex. $\therefore \angle$BAD = $\frac{1}{2} \angle$A = $\frac{1}{2}×60°=30°$ Hence, the correct answer is 30°.
Application | Eligibility | Selection Process | Result | Cutoff | Admit Card | Preparation Tips
Question : In $\triangle$ABC, $\angle$C = 90° and CD is perpendicular to AB at D. If $\frac{\text{AD}}{\text{BD}}=\sqrt{k}$, then $\frac{\text{AC}}{\text{BC}}$=?
Option 1: $\sqrt{k}$
Option 2: $\frac{1}{\sqrt{k}}$
Option 3: $\sqrt[4]{k}$
Option 4: $k$
Question : In $\triangle A B C, \mathrm{BD} \perp \mathrm{AC}$ at $\mathrm{D}$. $\mathrm{E}$ is a point on $\mathrm{BC}$ such that $\angle B E A=x^{\circ}$. If $\angle E A C=46^{\circ}$ and $\angle E B D=60^{\circ}$, then the value of $x$ is:
Option 1: 72°
Option 2: 78°
Option 3: 68°
Option 4: 76°
Question : PQR is an equilateral triangle inscribed in a circle. S is any point on the arc QR. Measure of $\frac{1}{2} \angle \mathrm{PSQ}$ is:
Option 1: 20°
Option 2: 15°
Option 4: 60°
Question : $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DEF}$ are two triangles such that $\triangle \mathrm{ABC} \cong \triangle \mathrm{FDE}$. If AB = 5 cm, $\angle$B = 40° and $\angle$A = 80°, then which of the following options is true?
Option 1: DF = 5 cm, $\angle$E = 60°
Option 2: DE = 5 cm, $\angle$F = 60°
Option 3: DE = 5 cm, $\angle$D = 60°
Option 4: DE = 5 cm, $\angle$E = 60°
Question : If $\triangle ABC$ is right-angled at B, AB = 30 units and $\angle ACB=60°$, what is the value of AC?
Option 1: $20$ units
Option 2: $20\sqrt3$ units
Option 3: $40$ units
Option 4: $60$ units
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile