Question : In the triangle $\mathrm{ABC}, \mathrm{AB}=12 \mathrm{~cm},\mathrm{AC}=10 \mathrm{~cm}$, and $\angle \mathrm{BAC}=60^{\circ}$. What is the value of the length of the side $\mathrm{BC}$?
Option 1: 10 cm
Option 2: 7.13 cm
Option 3: 13.20 cm
Option 4: 11.13 cm
Latest: SSC CGL 2024 final Result Out | SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL Tier 1 Scorecard 2024 Released | SSC CGL complete guide
Suggested: Month-wise Current Affairs | Upcoming Government Exams
Correct Answer: 11.13 cm
Solution : Given, $\mathrm{AB}=12 \mathrm{~cm},\mathrm{AC}=10 \mathrm{~cm}$, and $\angle \mathrm{BAC}=60^{\circ}$ According to cosine law, $\mathrm{BC}^2=\mathrm{AB}^2+\mathrm{AC}^2-2(\mathrm{AB})(\mathrm{AC})\cos 60^\circ$ ⇒ $\mathrm{BC}^2=12^2+10^2-2\times12\times10\times0.5$ $\therefore \mathrm{BC}=11.13\mathrm{~cm}$ Hence, the correct answer is 11.13 cm.
Candidates can download this ebook to know all about SSC CGL.
Admit Card | Eligibility | Application | Selection Process | Preparation Tips | Result | Answer Key
Question : In a $\triangle ABC$, if $\angle A=90^{\circ}, AC=5 \mathrm{~cm}, BC=9 \mathrm{~cm}$ and in $\triangle PQR, \angle P=90^{\circ}, PR=3 \mathrm{~cm}, QR=8$ $\mathrm{cm}$, then:
Option 1: $\triangle ABC \cong \triangle PQR$
Option 2: $ar(\triangle ABC)\neq ar(\triangle PQR)$
Option 3: $ar(\triangle ABC) \leq ar(\triangle PQR)$
Option 4: $ar(\triangle ABC)=ar(\triangle PQR)$
Question : If $\triangle \mathrm{ABC} \cong \triangle \mathrm{PQR}, \mathrm{BC}=6 \mathrm{~cm}$, and $\angle \mathrm{A}=75^{\circ}$, then which one of the following is true?
Option 1: $\mathrm{QR}=6$ cm, $\angle \mathrm{R}=75^{\circ}$
Option 2: $\mathrm{QR}=6$ cm, $\angle \mathrm{Q}=75^{\circ}$
Option 3: $\mathrm{QR}=6$ cm, $\angle \mathrm{P}=75^{\circ}$
Option 4: $\mathrm{PR}=6$ cm, $\angle \mathrm{P}=75^{\circ}$
Question : $ABC$ is a triangle and $D$ is a point on the side $BC$. If $BC = 16\mathrm{~cm}$, $BD = 11 \mathrm{~cm}$ and $\angle ADC = \angle BAC$, then the length of $AC$ is equal to:
Option 1: $4 \sqrt{5} \mathrm{~cm}$
Option 2: $4 \mathrm{~cm}$
Option 3: $3 \sqrt{5} \mathrm{~cm}$
Option 4: $5 \mathrm{~cm}$
Question : In $\triangle \mathrm{ABC}$, $\angle \mathrm{ABC} = 90^{\circ}$, $\mathrm{BP}$ is drawn perpendicular to $\mathrm{AC}$. If $\angle \mathrm{BAP} = 50^{\circ},$ what is the value of $\angle \mathrm{PBC}?$
Option 1: $30^{\circ}$
Option 2: $45^{\circ}$
Option 3: $50^{\circ}$
Option 4: $60^{\circ}$
Question : $\triangle ABC$ and $\triangle PQR$ are two triangles. AB = PQ = 6 cm, BC = QR =10 cm, and AC = PR = 8 cm. If $\angle ABC = x$, then what is the value of $\angle PRQ$?
Option 1: $(180 ^{\circ}–x)$
Option 2: $x$
Option 3: $(90 ^{\circ}–x)$
Option 4: $(90 ^{\circ}+x)$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile