Question : Let $\sqrt[3]{a}=\sqrt[3]{26}+\sqrt[3]{7}+\sqrt[3]{63}$. Then:
Option 1: $a<729$ but $a>216$
Option 2: $a<216$
Option 3: $a>729$
Option 4: $a = 729$
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $a<729$ but $a>216$
Solution : $\sqrt[3]{a}=\sqrt[3]{26}+\sqrt[3]{7}+\sqrt[3]{63}$ As we know, $\sqrt[3]{26}< 3$, $\sqrt[3]{7}< 2$, and $\sqrt[3]{63}< 4$ So, $\sqrt[3]{a}=\sqrt[3]{26}+\sqrt[3]{7}+\sqrt[3]{63}$ ⇒ $\sqrt[3]{a} < 3+2+4$ ⇒ $\sqrt[3]{a}<9$ ⇒ $a<729$ And, $\sqrt[3]{a}=\sqrt[3]{26}+\sqrt[3]{7}+\sqrt[3]{63}$ ⇒$\sqrt[3]{a}>2 + 1 + 3$ ⇒ $a>216$ So, $a>216$ Hence, the correct answer is $a<729$ but $a>216$.
Candidates can download this e-book to give a boost to thier preparation.
Application | Eligibility | Admit Card | Answer Key | Preparation Tips | Result | Cutoff
Question : Let $a=\frac{1}{2-\sqrt{3}}+\frac{1}{3-\sqrt{8}}+\frac{1}{4-\sqrt{15}}$ then we have:
Option 1: $a<18 \text{ but } a\neq 9$
Option 2: $a>18$
Option 3: $a=18$
Option 4: $a=9$
Question : If $a+b :\sqrt{ab} = 4:1 $ where $ a > b > 0$, then $ a:b$ is:
Option 1: $\left (2+\sqrt{3} \right):\left (2-\sqrt{3} \right)$
Option 2: $\left (2-\sqrt{3} \right):\left (2+\sqrt{3} \right)$
Option 3: $\left (3+\sqrt{2} \right):\left (3-\sqrt{2} \right)$
Option 4: $\left (3-\sqrt{2} \right):\left (3+\sqrt{2} \right)$
Question : If $a=\sqrt{6}–\sqrt{5}$, $b=\sqrt{5}–2$, and $c=2–\sqrt{3}$, then point out the correct alternative among the four alternatives given below.
Option 1: $b<a<c$
Option 2: $a<c<b$
Option 3: $b<c<a$
Option 4: $a<b<c$
Question : Which of the following is true?
Option 1: $\sqrt 5 + \sqrt 3 > \sqrt 6 + \sqrt 2$
Option 2: $\sqrt 5 + \sqrt 3 < \sqrt 6 + \sqrt 2$
Option 3: $\sqrt 5 + \sqrt 3 = \sqrt 6 + \sqrt 2$
Option 4: $(\sqrt 5 + \sqrt 3 ) (\sqrt 6 + \sqrt 2 )= 1$
Question : If $a=\frac{1}{a-\sqrt{6}}$ and $(a>0)$, then the value of $\left(a+\frac{1}{a}\right)$ is:
Option 1: $\sqrt{6}$
Option 2: $\sqrt{10}$
Option 3: $\sqrt{15}$
Option 4: $\sqrt{7}$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile