Question : Simplify the expression: $\frac{3-\operatorname{\sin}^2 A+\operatorname{\cos}^2 A}{2+2 \operatorname{\cos}^2 A}$
Option 1: 1
Option 2: 0
Option 3: –1
Option 4: 2
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 1
Solution : $\frac{3-\operatorname{\sin}^2 A+\operatorname{\cos}^2 A}{2+2 \operatorname{\cos}^2 A}$ $=\frac{1-\operatorname{\sin}^2 A+2+\operatorname{\cos}^2 A}{2+2 \operatorname{\cos}^2 A}$ $=\frac{\operatorname{\cos}^2 A+2+\operatorname{\cos}^2 A}{2+2 \operatorname{\cos}^2 A}$ [$\because\cos^2 A=1-\sin^2 A$] $=\frac{2+2\operatorname{\cos}^2 A}{2+2 \operatorname{\cos}^2 A}$ $=1$ Hence, the correct answer is 1.
Candidates can download this e-book to give a boost to thier preparation.
Application | Eligibility | Admit Card | Answer Key | Preparation Tips | Result | Cutoff
Question : Simplify the following expression: $\frac{1-\sin A}{\cos A}+\frac{\cos A}{1-\sin A}$
Option 1: $2 \cos A$
Option 2: $2 \tan A$
Option 3: $2 \sec A$
Option 4: $2 \sin A$
Question : The given expression is equal to $\frac{\sin^4 A+\cos^4 A}{1-2 \sin^2 A \cos^2 A}$:
Option 2: –1
Option 3: 0
Question : Simplify the given expression: $\frac{\sin^2 32^{\circ}+\sin^2 58^{\circ}}{\cos^2 32^{\circ}+\cos^2 58^{\circ}}+\sin^2 53^{\circ}+\cos 53^{\circ} \sin 37^{\circ}$
Option 1: 2
Option 3: –2
Option 4: 1
Question : What is the value of the expression: $\sin A(1+\frac{\sin A}{\cos A})+\cos A(1+\frac{\cos A}{\sin A})$?
Option 1: $\sec A+\operatorname{cosec}A$
Option 2: $\sin \mathrm{A}+\cos \mathrm{A}$
Option 3: $\sin \mathrm{A}-\cos \mathrm{A}$
Option 4: $\sec \mathrm{A}-\operatorname{cosec} \mathrm{A}$
Question : If $\sin \theta+\cos \theta=\frac{1}{29}$, then find the value of $\frac{\operatorname{sin} \theta+\operatorname{cos} \theta}{\operatorname{sin} \theta-\operatorname{cos} \theta}$.
Option 1: $\frac{1}{41}$
Option 2: $\frac{43}{29}$
Option 3: $\frac{41}{29}$
Option 4: $\frac{1}{43}$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile