Question : Simplify the expression: $\frac{1}{8}\left[\frac{1}{b-1}-\frac{1}{b+1}-\frac{2}{b^2+1}-\frac{4}{b^4+1}\right]$
Option 1: $\frac{1}{b^8-1}$
Option 2: $\frac{8}{b^8+1}$
Option 3: $\frac{8}{b^8-1}$
Option 4: $\frac{1}{b^8+1}$
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\frac{1}{b^8-1}$
Solution : $\frac{1}{8}[\frac{1}{b-1}-\frac{1}{b+1}-\frac{2}{b^2+1}-\frac{4}{b^4+1}]$ = $\frac{1}{8}[\frac{(b+1)-(b-1)}{b^2-1}-\frac{2}{b^2+1}-\frac{4}{b^4+1}]$ = $\frac{1}{8}[\frac{2}{b^2-1}-\frac{2}{b^2+1}-\frac{4}{b^4+1}]$ = $\frac{1}{8}[\frac{2(b^2+1)-2(b^2-1)}{b^4-1}-\frac{4}{b^4+1}]$ = $\frac{1}{8}[\frac{4}{b^4-1}-\frac{4}{b^4+1}]$ = $\frac{1}{8}[\frac{4(b^4+1)-4(b^4-1)}{b^8-1}]$ = $\frac{1}{8}[\frac{8}{b^8-1}]$ = $\frac{1}{b^8-1}$ Hence, the correct answer is $\frac{1}{b^8-1}$.
Candidates can download this e-book to give a boost to thier preparation.
Application | Eligibility | Admit Card | Answer Key | Preparation Tips | Result | Cutoff
Question : Find the value of the given expression. $\left(2 \frac{1}{2}÷ 1 \frac{7}{8}\right) ÷\left(9 \frac{3}{8}÷ 11 \frac{2}{3} \text { of } \frac{1}{8}\right)$
Option 1: $\frac{33}{135}$
Option 2: $\frac{11}{135}$
Option 3: $\frac{28}{135}$
Option 4: $\frac{57}{135}$
Question : Simplify the expression: $\frac{a+b}{a-b} \div \frac{(a+b)^2}{\left(a^2-b^2\right)}$
Option 1: $–1$
Option 2: $(a + b)$
Option 3: $0$
Option 4: $1$
Question : Simplify the given expression $\frac{3\left(\sin ^4 z-\cos ^4 z+1\right)}{\sin ^2 z}$
Option 1: 9
Option 2: 2
Option 3: 4
Option 4: 6
Question : Find the value of the given expression: $\frac{(4\frac{1}{3}+3\frac{1}{3}\times 1\frac{4}{5}\div 3\frac{3}{4}\times (1\frac{1}{2}+1\frac{1}{3}))}{(\frac{2}{3}\div \frac{5}{6}\times \frac{2}{3})}$
Option 1: $11 \frac{3}{8}$
Option 2: $10\frac{1}{8}$
Option 3: $14\frac{3}{8}$
Option 4: $16\frac{5}{8}$
Question : The value of $2 \frac{3}{5} \div\left[2 \frac{1}{3} \div\left\{4 \frac{1}{3}-\left(2 \frac{1}{2}+\frac{2}{3}\right)\right\}\right]$ is equal to:
Option 1: $1 \frac{3}{10}$
Option 2: $2 \frac{7}{10}$
Option 3: $2 \frac{3}{7}$
Option 4: $1 \frac{3}{7}$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile