Question : Simplify the expression: $(2x+13-y)(2x-13-y)$
Option 1: $4x^2-y^2-4xy-169$
Option 2: $4x^2+y^2+4xy-169$
Option 3: $4x^2+y^2-4xy-169$
Option 4: $4x^2+y^2-4xy+169$
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $4x^2+y^2-4xy-169$
Solution : $(2x+13-y)(2x-13-y)$ $=[(2x-y)+13][(2x-y)-13]$ $=(2x-y)^2-13^2$ $=4x^2+y^2-4xy-169$ Hence, the correct answer is $4x^2+y^2-4xy-169$.
Candidates can download this e-book to give a boost to thier preparation.
Application | Eligibility | Admit Card | Answer Key | Preparation Tips | Result | Cutoff
Question : The algebraic expression $4x^2-y^2+6y-9$ is equal to______.
Option 1: $(2x + y - 3)(2x - y + 3)$
Option 2: $(2x - y - 3)(2x - y + 3)$
Option 3: $(2x + y - 3)^2$
Option 4: $(2x + y + 3)^2$
Question : Simplify the given expression $\frac{(x+3)^3+(x-3)^3}{x^2+27}$.
Option 1: $3x$
Option 2: $x$
Option 3: $4x$
Option 4: $2x$
Question : Simplify the given expression $\frac{(x^3-y^3)(x+y)}{x^2+x y+y^2}$.
Option 1: $x - y$
Option 2: $x^2-y^2$
Option 3: $x + y$
Option 4: $x^2+y^2$
Question : Simplify the given expression and find the value for $x=-1$. $\frac{10 x^2+5 x+2 x y+y}{5 x+y}$
Option 1: –1
Option 2: 0
Option 3: 1
Option 4: 2
Question : If $4x^2+y^2 = 40$ and $xy=6$, then the value of $2x-y$ is:
Option 1: 1
Option 2: 3
Option 3: 4
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile