Question : Simplify the following: $\mathrm{(1+cot^2\theta)(1-cos\theta)(1+cos\theta)}$
Option 1: 1
Option 2: –5
Option 3: 3
Option 4: –3
Correct Answer: 1
Solution : $\mathrm{(1+cot^2\theta)(1-cos\theta)(1+cos\theta)}$ $=\mathrm{(1+cot^2\theta)(1-cos^2\theta)}$ $=\mathrm{(cosec^2\theta)(sin^2\theta)}$ $=1$ Hence, the correct answer is 1.
Application | Eligibility | Selection Process | Result | Cutoff | Admit Card | Preparation Tips
Question : Simplify. $\frac{\sin8\theta \cos\theta - \sin6\theta \cos3\theta}{\cos2\theta \cos\theta - \sin3\theta \sin4\theta}$
Option 1: $\cot \theta$
Option 2: $\cot 2 \theta$
Option 3: $\tan \theta$
Option 4: $\tan 2 \theta$
Question : Simplify $\frac{\cos ^4 \theta-\sin ^4 \theta}{\sin ^2 \theta}$.
Option 1: $1-\tan ^2 \theta$
Option 2: $\tan ^2 \theta-1$
Option 3: $\cot ^2 \theta-1$
Option 4: $1-\cot ^2 \theta$
Question : If $\sin^2\theta = \cos^3\theta$, then the value of $(\cot^2\theta -\cot^6\theta)$ is:
Option 1: –1
Option 2: 0
Option 3: 2
Option 4: 1
Question : If $\cos ^2 \theta-\sin ^2 \theta=\tan ^2 \phi$, then which of the following is true?
Option 1: $\cos \theta \cos \phi=1$
Option 2: $\cos ^2 \phi-\sin ^2 \phi=\tan ^2 \theta$
Option 3: $\cos ^2 \phi-\sin ^2 \phi=\cot ^2 \theta$
Option 4: $\cos \theta \cos \phi=\sqrt{2}$
Question : The value of $\frac{2 \cos ^3 \theta-\cos \theta}{\sin \theta-2 \sin ^3 \theta}$ is:
Option 1: $\sec \theta$
Option 2: $\sin \theta$
Option 3: $\cot \theta$
Option 4: $\tan \theta$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile