Question : Simplify the following expression: $\frac{\left(a^2+b^2-c^2\right)^2-\left(a^2-b^2+c^2\right)^2}{b^2-c^2}$
Option 1: $3a^2$
Option 2: $4a^2$
Option 3: $5a^2$
Option 4: $2a^2$
New: SSC CHSL Tier 2 answer key released | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $4a^2$
Solution : Given: $\frac{(a^2+b^2-c^2)^2-(a^2-b^2+c^2)^2}{b^2-c^2}$ $= \frac{(a^2+b^2-c^2+a^2-b^2+c^2)(a^2+b^2-c^2-a^2+b^2-c^2)}{b^2-c^2}$ $= \frac{(2a^2)(2b^2-2c^2)}{b^2-c^2}$ $= \frac{4a^2(b^2-c^2)}{b^2-c^2}$ $= 4a^2$ Hence, the correct answer is $4a^2$.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : Simplify the expression: $(c+d)^2-(c-d)^2$
Question : Simplify the expression: $\frac{a+b}{a-b} \div \frac{(a+b)^2}{\left(a^2-b^2\right)}$
Question : The simplified value of the following is: $\left (\frac{3}{15}a^{5}b^{6}c^{3}\times \frac{5}{9}ab^{5}c^{4} \right )\div \frac{10}{27}a^{2}bc^{3}$.
Question : If $\small x=a\left (b-c \right),\; y=b\left (c-a \right) ,\; z=c\left (a-b \right)$, then the value of $\left (\frac{x}{a} \right)^{3}+\left (\frac{y}{b} \right)^{3}+\left (\frac{z}{c} \right)^{3}$ is:
Question : If $\cot A=\frac{5}{12}$, find the value of the following expression: $\frac{5\left(1-\cos^2 A\right)}{6\left(1-\sin^2 A\right)}$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile