Question : The value of $0. \overline{57}-0.4 \overline{32}+0.3 \overline{5}$ is:
Option 1: $0.4 \overline{98}$
Option 2: $0.4 \overline{94}$
Option 3: $0. \overline{498}$
Option 4: $0. \overline{495}$
Latest: SSC CGL 2024 final Result Out | SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL Tier 1 Scorecard 2024 Released | SSC CGL complete guide
Suggested: Month-wise Current Affairs | Upcoming Government Exams
Correct Answer: $0.4 \overline{98}$
Solution : $0. \overline{57}-0.4 \overline{32}+0.3 \overline{5}$ can be written as $=\frac{57}{99} - \frac{428}{990} + \frac{32}{90}$ $=\frac{(570 - 428 + 352)}{990}$ $=\frac{494}{990}$ [Converting into expression: 4 will be added with unit digit as the denominator having '0' in it) Value of the given Expression = $0.4 \overline{98}$ Hence, the correct answer is $0.4\overline{98}$.
Candidates can download this ebook to know all about SSC CGL.
Admit Card | Eligibility | Application | Selection Process | Preparation Tips | Result | Answer Key
Question : The value of $0.4 \overline{6}+0.7 \overline{23}-0.3 \overline{9} \times 0. \overline{7}$ is:
Option 1: $0.\overline{97}$
Option 2: $0.\overline{57}$
Option 3: $0.\overline{77}$
Option 4: $0.\overline{87}$
Question : The value of $11. \overline{4}+22.5 \overline{67}-33.5 \overline{9}$ is:
Option 1: $40. \overline{12}$
Option 2: $4. \overline{12}$
Option 3: $0.4\overline{12}$
Option 4: $0.04\overline{12}$
Question : If $\mathrm{A}=0.3 \overline{12}, \mathrm{~B}=0.4 \overline{15}$ and $\mathrm{C}=0.30 \overline{9}$, then what is the value of $A + B + C$?
Option 1: $\frac{1141}{1100}$
Option 2: $\frac{1097}{1100}$
Option 3: $\frac{1211}{1100}$
Option 4: $\frac{1043}{1100}$
Question : The value of $\frac{0.7× 0.7× 0.7+0.3 × 0.3 × 0.3}{0.7 × 0.7-0.7× 0.3+0.3 × 0.3}$ is_____.
Option 1: 2
Option 2: 1
Option 3: 3
Option 4: – 1
Question : If $x+\frac{1}{x}=2$, then the value of $x^{57}+\frac{1}{x^{57}}$ is:
Option 1: 1
Option 2: –2
Option 3: 0
Option 4: 2
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile