Question : What is the value of the given expression? $(a+b+c)^2-a^2-b^2-c^2$
Option 1: $2abc$
Option 2: $2(ab+bc+ca)$
Option 3: $2(a+b+c)$
Option 4: $2ab+bc-2ca$
Latest: SSC CGL Tier 1 Result 2024 Out | SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL Tier 1 Scorecard 2024 Released | SSC CGL complete guide
Suggested: Month-wise Current Affairs | Upcoming Government Exams
Correct Answer: $2(ab+bc+ca)$
Solution : By using the identity: $(a+b+c)^{2} = a^{2}+b^{2}+c^{2}+2(ab+bc+ca)$ $\therefore$ $(a+b+c)^{2}- a^{2}- b^{2}- c^{2} = 2(ab+bc+ca)$. Hence, the correct answer is $2(ab+bc+ca)$.
Candidates can download this ebook to know all about SSC CGL.
Admit Card | Eligibility | Application | Selection Process | Preparation Tips | Result | Answer Key
Question : If $\frac{a^{2} - bc}{a^{2}+bc}+\frac{b^{2}-ca}{b^{2}+ca}+\frac{c^{2}-ab}{c^{2}+ab}=1$, then the value of $\frac{a^{2}}{a^{2}+bc}+\frac{b^{2}}{b^{2}+ac}+\frac{c^{2}}{c^{2}+ab}$ is:
Question : If $a+b+c$ = 6 and $ab+bc+ca$ = 11, then the value of $bc(b+c)+ca(c+a)+ab(a+b)+3abc$ is:
Question : What is the value of ${a}^3+{b}^3+{c}^3$ if $(a+b+c)=0$?
Question : If $\frac{2+a}{a}+\frac{2+b}{b}+\frac{2+c}{c}=4$, then the value of $\frac{ab+bc+ca}{abc}$ is:
Question : If $\frac{x-a^{2}}{b+c}+\frac{x-b^{2}}{c+a}+\frac{x-c^{2}}{a+b} = 4(a+b+c)$, then $x$ is equal to:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile