Inverse Trigonometric Function Formulas for Complementary Angles

Inverse Trigonometric Function Formulas for Complementary Angles

Komal MiglaniUpdated on 02 Jul 2025, 07:31 PM IST

Inverse trigonometric functions can be defined as the inverses of the basic trigonometric functions - sine, cosine, tangent, cotangent, secant, and cosecant. We know that trigonometric functions are periodic and hence, man-one in their actual domain. So, to define an inverse trigonometric function, we have to restrict its actual domain to make the function injective. In real life, we use the inverse trigonometric function for determining the depth of the hole or the angle of inclination.

Inverse Trigonometric Function Formulas for Complementary Angles
Inverse Trigonometric Function Formulas for Complementary Angles

Inverse Trigonometric Function Formulas for Complementary angles:

To use inverse trigonometric functions, we need to understand that an inverse trigonometric function “undoes” what the original trigonometric function “does,” as is the case with any other function and its inverse. In other words, the domain of the inverse function is the range of the original function and vice versa.

For example, If $f(x)=\sin x$, then we would write $f^{-1}(x)=\sin ^{-1} x$. Be aware that $\sin ^{-1} x$ does not mean $1 / \sin x$.. The following examples illustrate the inverse trigonometric functions:

1. $\sin (\pi / 6)=1 / 2$, then $\pi / 6=\sin ^{-1}(1 / 2)$
2. $\cos (\pi)=-1$, then $\pi=\cos ^{-1}(-1)$
3. $\tan (\pi / 4)=1$, then $(\pi / 4)=\tan ^{-1}(1)$

We know that the inverse of a function is defined when the function is one-one and onto. But we also know that trigonometric functions are periodic and hence many-one in their domain.

So, to make the inverse of trigonometric functions to be defined, the actual domain of trigonometric function must be restricted to make it a one-one function and its co-domain should be restricted to make it an onto function.

The domain of the sine function is R and the range is [-1, 1]. If we restrict its domain to$[-\pi / 2, \pi / 2]$ then it becomes one-one and if we restrict its co-domain to [-1,1], then it becomes onto. So for this new domain and range, the inverse of our function y = sin(x) is defined. Domain for this inverse function y = sin-1(x) will be a range of$y=\sin (x):[-1,1]$ and its range will be equal to the domain of$y=\sin (x):[-\pi / 2, \pi / 2]$

The sine function can be restricted to any of the intervals $[-3 \pi / 2,-\pi / 2],[-\pi / 2, \pi / 2],[\pi / 2,3 \pi / 2]$ and so on. It becomes one-one in all these intervals and it is also onto (if codomain is [-1,1]). We can, therefore, define the inverse of the sine function in each of these intervals. But by convention, we take the domain as $[-\pi / 2, \pi / 2]$, and this domain is called the Principal domain/ Principal value branch of $y=\sin (x)$..

So if $f[-\pi / 2, \pi / 2] \rightarrow[-1,1]$ and $f(x)=\sin (x)$, then its inverse is

$
[-1,1] \rightarrow[-\pi / 2, \pi / 2] \text { and } f^{-1}(x)=\sin ^{-1}(x)
$

In a similar way, we define other trigonometric functions by restricting their domain and co-domains.

So, the range of the inverse trigonometric function is the restricted domain of the corresponding trigonometric function.

1. $\sin ^{-1} x+\cos ^{-1} x=\frac{\pi}{2}$, for all $x \in[-1,1]$
2. $\tan ^{-1} x+\cot ^{-1} x=\frac{\pi}{2}$, for all $x \in R$
3. $\sec ^{-1} x+\operatorname{cosec}^{-1} x=\frac{\pi}{2}$ for all $x \in(-\infty,-1) \cup[1, \infty)$

Proof:

$
\begin{aligned}
& \text { Let } \sin ^{-1} x=\theta \\
& \text { where } \theta \in[-\pi / 2, \pi / 2] \\
& \Rightarrow \quad \begin{array}{l}
-\frac{\pi}{2} \leq-\theta \leq \frac{\pi}{2} \\
\Rightarrow \quad 0 \leq \frac{\pi}{2}-\theta \leq \pi \\
\Rightarrow \\
\quad \frac{\pi}{2}-\theta \in[0, \pi] \\
\text { Now, } \sin ^{-1} x=\theta \\
\text { Or, } \quad x=\sin \theta \\
\Rightarrow \quad x=\cos \left(\frac{\pi}{2}-\theta\right) \\
\Rightarrow \quad \cos ^{-1} \mathrm{x}=\frac{\pi}{2}-\theta
\end{array} \quad[\because \mathrm{x} \in[-1,1] \text { and }(\pi / 2-\theta) \in[0, \pi]] \\
& \Rightarrow \quad \theta+\cos ^{-1} \mathrm{x}=\frac{\pi}{2}
\end{aligned} \quad
$
From Eqs.(i) and (ii), we get $\sin ^{-1} x+\cos ^{-1} x=\pi / 2$.

Similarly, we get the other results

Recommended Video Based on Inverse Trigonometric Function Formulas for Complementary Angles:


Solved Examples Based on Complementary Angles:

Example 1: If If $\cos ^{-1} x-\cos ^{-1} \frac{y}{2}=\alpha$ then $4 x^2-4 x y \cos \alpha+y^2$ is equal to:

1) 4

$\begin{aligned} & \text { 2) } 2 \sin 2 a \\ & \text { 3) }-4 \sin ^2 d \\ & \text { 4) } 4 \sin ^2 d\end{aligned}$

Solution

As we learned in

Formulae of Inverse Trigonometric Functions -

$\cos ^{-1} x+\cos ^{-1} y=\cos ^{-1}\left(x y-\sqrt{1-x^2} \sqrt{1-y^2}\right)$

- wherein

$x \geqslant 0, y \geqslant 0$

$\cos ^{-1} x-\cos ^{-1} \frac{y}{2}=\alpha$

$\Rightarrow \cos ^{-1}\left(\frac{x y}{2}+\sqrt{1-x^2} \sqrt{1-\frac{y^2}{4}}\right)=\alpha$

$\begin{aligned} & \Rightarrow \cos \alpha=\frac{x y}{2}+\sqrt{1-x^2} \sqrt{1-\frac{y^2}{4}} \\ & =\frac{1}{2}\left\{x y+\sqrt{1-x^2} \sqrt{4-y^2}\right\} \ldots \ldots(1)\end{aligned}$

Squaring, we get

$\begin{aligned} & \cos ^2 \alpha=\frac{1}{4}\left[x^2 y^2+\left(1-x^2\right)\left(4-y^2\right)+2 x y \sqrt{1-x^2} \sqrt{4-y^2}\right] \\ & =\frac{1}{4}\left[2 x^2 y^2-4 x^2-y^2+4\right]+\frac{x y}{2} \sqrt{1-x^2} \sqrt{4-y^2} \\ & \cos ^2 \alpha=1+\frac{1}{4}\left[2 x^2 y^2-4 x^2-y^2\right]+\frac{x y}{2} \sqrt{1-x^2} \sqrt{4-y^2} \\ & \Rightarrow 1-\cos ^2 \alpha=\frac{1}{4}\left[4 x^2+y^2-2 x^2 y^2\right]-\frac{x y}{2} \sqrt{1-x^2} \sqrt{4-y^2} \\ & \Rightarrow 4 \sin ^2 \alpha=4 x^2+y^2-2 x^2 y^2-2 x y \sqrt{1-x^2} \sqrt{4-y^2 \ldots \ldots(2)} \\ & =4 x^2+y^2-2 x^2 y^2-2 x y[2 \cos \alpha-x y \\ & \Rightarrow 4 \sin ^2 \alpha=4 x^2+y^2-4 x y \cos a\end{aligned}$

Hence, the answer is the option (4).

Example 2: Let $\tan ^{-1} y=\tan ^{-1} x+\tan ^{-1}\left(\frac{2 x}{1-x^2}\right)$ where $|x|<\frac{1}{\sqrt{3}}$

Then the value of $y$ is :

1) $\frac{3 x-x^3}{1-3 x^2}$
2) $\frac{3 x+x^3}{1-3 x^2}$
3) $\frac{3 x-x^3}{1+3 x^2}$ $\qquad$
4) $\frac{3 x+3}{1+3 x^2}$

Solution

$|x|<\frac{1}{\sqrt{3}} \Rightarrow \tan ^{-1} x<30^{\circ}, \tan ^{-1} \frac{2 x}{1-x^2}<60^{\circ}$

$\Rightarrow \tan ^{-1} y<90^{\circ}$

$\tan ^{-1} y=\tan ^{-1} x+\tan ^{-1} \frac{2 x}{1-x}$

$ =\tan ^{-1} x+2 \tan ^{-1} x$

$ =3 \tan ^{-1} x$
$
y=\tan \left(3 \tan ^{-1} x\right) \quad\left[\because \tan 3 x=\frac{3 \tan x-\tan ^3 x}{1-3 \tan ^2 x}\right]
$

$
\begin{aligned}
& =\frac{3 \tan \left(\tan ^{-1} x\right)-\left[\tan ^{\left.\left(\tan ^{-3} x\right)\right]}\right.}{1-3\left(\tan ^{-2} \tan ^{-1} x\right)^2} \\
& =\frac{3 x-x^3}{1-3 x^2}
\end{aligned}
$

Hence, the answer is the option 1.

Example 3: If $\cos ^{-1}\left(\frac{2}{3 x}\right)+\cos ^{-1}\left(\frac{3}{4 x}\right)=\frac{\pi}{2}\left(x>\frac{3}{4}\right)$, then $x$ is equal to:

1) $\frac{\sqrt{145}}{12}$

2) $\frac{\sqrt{ } 145}{10}$

3) $\frac{\sqrt{146}}{12}$

4) 4) $\frac{\sqrt{145}}{11}$

Solution

Given:

$\cos ^{-1}\left(\frac{2}{3 x}\right)+\cos ^{-1}\left(\frac{3}{4 x}\right)=\frac{\pi}{2}$

This can be written as:

$\cos ^{-1}\left(\frac{2}{3 x}\right)=\frac{\pi}{2}-\cos ^{-1}\left(\frac{3}{4 x}\right)$

$\Rightarrow \cos \left(\cos ^{-1}\left(\frac{2}{3 x}\right)\right)=\cos \left(\sin ^{-1}\left(\frac{3}{4 x}\right)\right)$

$\Rightarrow$ $\frac{2}{3(x)}=\frac{\sqrt{16 x^2-9}}{4 x}$

$\Rightarrow 16 x^2-9=\frac{64}{9}$

$\Rightarrow$ $x= \pm \frac{\sqrt{145}}{12}$

But $x>\frac{3}{4}$

So, $x=\frac{\sqrt{145}}{12}$

Hence, the answer is the option (1).

Example 4: If $\cos ^{-1} x-\cos ^{-1} \frac{y}{2}=\alpha$ , where$-1<x<1,-2 \leq y \leq 2, x \leq \frac{y}{2}$, then for all $x, y, 4 x^2-4 x y \cos \alpha+y^2$ is equal to :

1) $4 \sin ^2 a$
2) $2 \sin ^2 a$
3) $\sin ^2 \alpha-2 x^2 y$
4) $4 \cos ^2 a+2 x^2 y^2$

Solution

Formulae of Inverse Trigonometric Functions -

$\cos ^{-1} x+\cos ^{-1} y=\cos ^{-1}\left(x y-\sqrt{1-x^2} \sqrt{1-y^2}\right)$

- wherein

$x \geqslant 0, y \geqslant 0$

Trigonometric Identities -

$\sin ^2 \Theta+\cos ^2 \Theta=1$

$1+\tan ^2 \Theta=\sec ^2 \Theta$

$1+\cot ^2 \Theta=\operatorname{cosec}^2 \Theta$

- wherein

They are true for all real values of $\theta$

$\cos ^{-1} x-\cos ^{-1} \frac{y}{2}=\alpha$

where $-1 \leq x<1,-2 \leq y \leq 2, x \leq \frac{y}{2}$

$\cos \alpha=\cos \left(\cos ^{-1} x-\cos ^{-1} \frac{y}{2}\right)$

$=\cos \left(\cos ^{-1} x\right) \cdot \cos \left(\cos ^{-1} \frac{y}{2}\right)+\sin \left(\cos ^{-1} x\right) \sin \left(\cos ^{-1} \frac{y}{2}\right)$

$\begin{array}{r}=\frac{x y}{2}+\sqrt{1-x^2} \sqrt{1-\frac{y^2}{4}} \\ \cos \alpha-\frac{x y}{2}=\sqrt{1-x^2} \sqrt{1-\frac{y^2}{4}}\end{array}$

Squaring both sides

$\begin{aligned} & \cos ^2 \alpha+\frac{x^2 y^2}{4}-x y \cos \alpha=\left(1-x^2\right)\left(1-\frac{y^2}{4}\right) \\ & 1-4 x^2-y^2=4 \cos ^2 \alpha-4 x y \cos \theta \\ & =4\left(1-\cos ^2 a\right.\end{aligned}$

Hence, the answer is the option (1).

Example 5: If $\sin ^{-1} x+\sin ^{-1} y+\sin ^{-1} z=\frac{3 \pi}{2}$, then the value of $\sum \frac{\left(x^{101}+y^{101}\right)\left(x^{505}+y^{505}\right)}{\left(x^{303}+y^{303}\right)\left(x^{606}+y^{606}\right)}$

1) 1

2) 2

3) 3

4) 4

Solution

As we learned

$\sin ^{-1} x+\sin ^{-1} y+\sin ^{-1} z=\frac{3 \pi}{2}$

Is only possible if x=y=z=1 then $\sin ^{-1} x=\sin ^{-1} y=\sin ^{-1} z=\frac{\pi}{2}$

$\sum \frac{\left(x^{101}+y^{101}\right)\left(x^{500}+y^{500}\right)}{\left(x^{303}+y^{303}\right)\left(x^{606}+y^{606}\right)}=$

$\frac{\left(x^{101}+y^{101}\right)\left(x^{505}+y^{505}\right)}{\left(x^{303}+y^{303}\right)\left(x^{606}+y^{606}\right)}+\frac{\left(y^{101}+z^{101}\right)\left(y^{505}+z^{505}\right)}{\left(y^{303}+z^{303}\right)\left(y^{606}+z^{606}\right)}+\frac{\left(z^{101}+x^{101}\right)\left(z^{505}+x^{505}\right)}{\left(z^{303}+x^{303}\right)\left(z^{606}+x^{606}\right)}$

$=3$

Hence, the answer is the option 3.


Frequently Asked Questions (FAQs)

Q: Why don't we have similar complementary angle formulas for inverse sine and inverse tangent?
A:
While sin⁻¹(x) and tan⁻¹(x) are related, they don't form a simple complementary relationship like sin⁻¹(x) and cos⁻¹(x) due to their different domains and ranges.
Q: Can complementary angle formulas be extended to inverse trigonometric functions of complex numbers?
A:
Yes, but the relationships become more complex. In the complex plane, the simple complementary relationships of real-valued inverse trigonometric functions don't always hold.
Q: What is the significance of the value π/2 in complementary angle formulas?
A:
π/2 radians equals 90°, which is the sum of complementary angles. This value represents a quarter of a full circle and is fundamental in trigonometry and periodic functions.
Q: How do complementary angle formulas relate to the concept of inverse functions?
A:
Complementary angle formulas highlight the inverse relationship between sine and cosine functions. They demonstrate how these inverse functions "undo" each other to produce a constant result (π/2).
Q: Can you use complementary angle formulas to solve real-world problems?
A:
Yes, these formulas are useful in fields like physics and engineering, especially in problems involving right triangles or periodic phenomena where complementary angles naturally occur.
Q: How do complementary angle formulas extend to multiples of π/2?
A:
The basic formula extends to multiples of π/2. For example, sin⁻¹(x) + cos⁻¹(-x) = π, which is twice the basic complementary angle relationship.
Q: Why doesn't the formula arctan(x) + arccot(x) = π/2 work for all x?
A:
This formula is true for positive x, but not for all x because the ranges of arctan and arccot are different. For negative x, the formula becomes arctan(x) + arccot(x) = -π/2.
Q: What role do complementary angles play in the graphs of inverse trigonometric functions?
A:
The graphs of complementary inverse functions (like arcsin and arccos) are reflections of each other across the line y = π/4, illustrating their complementary nature visually.
Q: How do complementary angle formulas relate to the concept of function composition?
A:
Complementary angle formulas can be viewed as function compositions. For example, cos(sin⁻¹(x)) = √(1-x²) is a composition of cosine and inverse sine functions.
Q: Why is the complementary angle formula for inverse secant and cosecant different?
A:
The formula sec⁻¹(x) + csc⁻¹(x) = π/2 only holds for |x| ≥ 1 because secant and cosecant are reciprocals of cosine and sine, respectively, and have different domains.