Domain and Range of Inverse Trigonometric Functions

Domain and Range of Inverse Trigonometric Functions

Komal MiglaniUpdated on 02 Jul 2025, 07:37 PM IST

We know that trigonometric functions are periodic and hence, man-one in their actual domain. So, to define an inverse trigonometric function, we have to restrict its actual domain to make the function injective. In real life, we use the inverse trigonometric function for determining the depth of the hole or the angle of inclination.

This Story also Contains

  1. Domain of Inverse Trigonometric Function
  2. Rule to Find Domain of Inverse Trigonometric Functions
  3. Range of Inverse Trigonometric Function
  4. Domain and Range of $\sin ^{-1}(x)$
  5. Domain and Range of $y=\cos ^{-1}(x)$
  6. Domain and Range of $y=\tan ^{-1}(x)$
  7. Domain and Range of $y=\cot ^{-1}(x)$
  8. Domain and Range of $y=\sec ^{-1}(x)$
  9. Domain and Range of $y=\operatorname{cosec}^{-1}(x)$
Domain and Range of Inverse Trigonometric Functions
Domain and Range of Inverse Trigonometric Functions

In this article, we will cover the concept of Domain and range of inverse Trigonometric Functions. This category falls under the broader category of Trigonometry, which is a crucial Chapter in class 12 Mathematics. It is not only essential for board exams but also for competitive exams like the Joint Entrance Examination(JEE Main) and other entrance exams such as SRMJEE, BITSAT, WBJEE, BCECE, and more. A total of eighteen questions have been asked on this topic including one in 2015, eight in 2021, and four in 2022, three in 2023.

Domain of Inverse Trigonometric Function

Domain is defined as a set of numbers x for which$f(x)$ is true. The domain of an inverse function is equal to the range of the function.

Domain of $\sin ^{-1}(x)$ is $[-1,1]$ or $-1 \leq x \leq 1$
Domain of $\cos ^{-1}(x)=[-1,1]$
Domain of $\csc ^{-1}(x)=(-\infty,-1]$ or $[1,+\infty)$
Domain of $\sec ^{-1}(x)=(-\infty,-1]$ or $[1,+\infty)$
Domain of $\tan ^{-1}(\mathrm{x})=$ All Real Numbers
Domain of $\cot ^{-1}(x)=$ All Real Numbers

Rule to Find Domain of Inverse Trigonometric Functions

For any trigonometric function, we can find the domain using the below rule.

That is,

Domain (y-1) = Range (y)

By knowing the range of trigonometric functions, we can get the domain of inverse trigonometric functions.

Range of Inverse Trigonometric Function

The range is defined as the set of values that the functions assume.

Range of $y=\sin ^{-1}(x)$ is,$-\pi / 2 \leq y \leq \pi / 2$
Range of $y=\cos ^{-1}(x)$ is $0 \leq y \leq \pi$
Range of $y=\csc ^{-1}(x)$ is $,-\pi / 2 \leq y \leq \pi / 2, y \neq 0$
Range of $y=\sec ^{-1}(x)$ is $0 \leq y \leq \pi, \quad y \neq \pi / 2$
Range of $y=\sec ^{-1}(x)$ is $0 \leq y \leq \pi, \quad y \neq \pi / 2$
Range of $y=\sec ^{-1}(x)$ is $0 \leq y \leq \pi, \quad y \neq \pi / 2$

Domain and Range of $\sin ^{-1}(x)$

$y=\sin ^{-1}(x)$

The function $y=\sin (x)$ is Many one so it is not invertible. Now consider the small portion of the function

$y=\sin x, x \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ and $y \in[-1,1]$


Which is strictly increasing, Hence, one-one and inverse is$y=\sin ^{-1}(x)$

Domain is $[-1,1]$ and Range is $\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$

Domain and Range of $y=\cos ^{-1}(x)$

$y=\cos ^{-1}(x)$


Domain is $[-1,1]$ and Range is $[0, \pi]$

Domain and Range of $y=\tan ^{-1}(x)$


Domain is $\mathbb{R}$ and Range is $\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$

Domain and Range of $y=\cot ^{-1}(x)$

Domain is $\mathbb{R}$ and Range is $(0, \pi$

Domain and Range of $y=\sec ^{-1}(x)$

Domain is $\mathbb{R}-(-1,1)$ and Range is $[0, \pi]-\left\{\frac{\pi}{2}\right\}$

Domain and Range of $y=\operatorname{cosec}^{-1}(x)$


Domain is $\mathbb{R}-(-1,1)$ and Range is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]-\{0\}$

Recommended Video Based on Domain and Range of Inverse Trigonometric Functions:

Solved Examples Based on Domain and Range of Trigonometric Functions

Example 1: Let D be the domain of the function $f(x)=\operatorname{Sin}^{-1}\left(\log _{3 x}\left(\frac{6+2 \log _3 x}{-5 x}\right)\right)$. If the range of the function $g: D \rightarrow R$ defined by $g(x)=x-[x],([x]$ is the greatest integer function ), is $(\alpha, \beta)$, then $\alpha^2+\frac{5}{\beta}$ is equal to [JEE MAINS 2023]

Solution

$\begin{aligned} & \frac{6+2 \log _3 x}{-5 x}>0 \& x>0 \& x \neq \frac{1}{3} \\ & \text { this gives } x \in\left(0, \frac{1}{27}\right) \ldots(1) \\ & -1 \leq \log _{3 x}\left(\frac{6+2 \log _3 x}{-5 x}\right) \leq 1 \\ & 3 x \leq \frac{6+2 \log _3 x}{-5 x} \leq \frac{1}{3 x}\end{aligned}$$\begin{array}{ll}15 x^2+6+2 \log _3 x \geq 0 & 6+2 \log _3 x+\frac{5}{3} \geq 0 \\ x \in\left(0, \frac{1}{27}\right) \ldots(2) & x \geq 3^{-\frac{23}{6}} \ldots(3) \\ \text { form }(1),(2) \&(3) & \\ x \in\left[3^{-\frac{23}{6}}, \frac{1}{27}\right) & \end{array}$
$
\begin{aligned}
& \text { form(1),(2)\&(3) } \\
& x \in\left[3^{\frac{23}{6}}, \frac{1}{27}\right)
\end{aligned}
$

$\therefore \alpha$ is small positive quantity
$\& \beta=\frac{1}{27}$
$\therefore \alpha^2+\frac{5}{\beta}$ is just greater than 135

Hence, the answer is 135

Example 2: If the domain of the function $f(x)-\log _e\left(4 x^2+11 x+6\right)+\sin ^{-1}(4 x+3)+\cos ^{-1} \frac{10 x+6}{3}$ is $(\alpha, \beta)$, then $36|\alpha+\beta|$ is equal to [JEE MAINS 2023]

Solution
$
\begin{aligned}
& f(x)=\ln \left(4 x^2+11 x+6\right)+\sin ^{-1}(4 x+3) \\
& +\cos ^{-1}\left(\frac{10 x+6}{3}\right)
\end{aligned}
$

$
\begin{aligned}
& \text { (i) } 4 x^2+11 x+6>0 \\
& 4 x^2+8 x+3 x+6>0 \\
& (4 x+3)(x+2)>0 \\
& x \in(-\infty,-2) \cup\left(-\frac{3}{4}, \infty\right)
\end{aligned}
$

$
\begin{aligned}
& \text { (ii) } 4 x+3 \in[-1,1] \\
& x \in[-1,-1 / 2]
\end{aligned}
$

$
\begin{aligned}
& \text { (iii) } \frac{10 x+6}{3} \in[-1,1] \\
& x \in\left[-\frac{9}{10},-\frac{3}{10}\right] \\
& x \in\left(-\frac{3}{4},-\frac{1}{2}\right] \\
& \alpha+\beta=-\frac{5}{4} \\
& 36|\alpha+\beta|=45
\end{aligned}
$

Hence, the answer is 45

Example 3: If the domain of the function $f(x)=\frac{\cos ^{-1} \sqrt{x^2-x+1}}{\sqrt{\sin ^{-1}\left(\frac{2 x-1}{2}\right)}}$is the interval$(\alpha, \beta)$, then $\alpha+\beta$ is equal to: [JEE MAINS 2021]

Solution

$f(x)=\frac{\cos ^{-1} \sqrt{x^2-x+1}}{\sqrt{\sin ^{-1}\left(\frac{2 x-1}{2}\right)}}$

For domain $-1 \leqslant \sqrt{x^2-x+1} \leqslant 1$ and $x^2-x+1 \geqslant 0$

$\begin{aligned} & \Rightarrow \quad \sqrt{x^2-x+1} \leqslant 1 \text { and } x^2-x+1 \geqslant 0 \\ & \Rightarrow x^2-x+1 \leqslant 1 \text { and } x^2-x+1 \geqslant 0 \\ & \Rightarrow \quad x^2-x \leqslant 0 \text { and } x \in R(\text { as } D<0, a>0) \\ & \Rightarrow x(x-1) \leqslant 0 \text { and } x \in R\end{aligned}$

$\Rightarrow x \in[0,1]$

For,

$\frac{1}{\sqrt{\sin ^{-1}\left(\frac{2 x-1}{2}\right)}}$

$\sin ^{-1}\left(\frac{2 x-1}{2}\right)>0$ and $-1 \leqslant \frac{2 x-1}{2} \leqslant 1$

$\begin{aligned} & \Rightarrow 0<\frac{2 x-1}{20} \leqslant 1 \text { and }-1 \leqslant \frac{2 x-1}{2} \leqslant 1 \\ & \Rightarrow 0<\frac{2 x-1}{2} \leqslant 1 \\ & \Rightarrow \quad 0<x-\frac{1}{2} \leq 1 \\ & \Rightarrow \frac{1}{2}<x \leqslant \frac{3}{2} .\end{aligned}$

Domain for $f(x)$ will be the intersection of these results.

$\begin{aligned} & \Rightarrow \quad x \in\left(\frac{1}{2}, 1\right] \\ & \Rightarrow \alpha=\frac{1}{2}, \beta=1 \Rightarrow \alpha+\beta=\frac{3}{2}\end{aligned}$

Hence, the answer is $\frac{3}{2}$

Example 4: The domain of the function $f(x)=\sin ^{-1}\left(\frac{x^2-3 x+2}{x^2+2 x+7}\right)$ is: [JEE MAINS 2022]

Solution

For domain

$
-1 \leq \frac{x^2-3 x+2}{x^2+2 x+7} \leq 1
$

As the denominator is positive ( $D_j 0$ )

$
-\left(x^2+2 x+7\right) \leq x^2-3 x+2 \leq x^2+2 x+7
$

Solving first

$
\begin{aligned}
& -x^2-2 x-7 \leqslant x^2-3 x+2 \\
& \Rightarrow 2 x^2-x+9 \geqslant 0 \\
& \Rightarrow x \in R \quad(\text { as } D<0)
\end{aligned}
$

Solving second

$
\begin{aligned}
& \mathrm{x}^2-3 \mathrm{x}+2 \leqslant \mathrm{x}^2+2 \mathrm{x}+7 \\
\Rightarrow & 5 \mathrm{x}+5 \geqslant 0 \\
\Rightarrow & x \geqslant-1 \\
\therefore \quad & \mathrm{x} \geqslant-1
\end{aligned}
$

Hence, the answer is the $[-1, \infty)$

Example 5: Considering only the principal values of the inverse trigonometric functions, the domain of the function $f(x)=\cos ^{-1}\left(\frac{x^2-4 x+2}{x^2+3}\right)$ is:[JEE MAINS 2022]

Solution

$\begin{aligned} & \left|\frac{x^2+4 x+2}{x^2+3}\right| \leq 1 \\ & \left(x^2-4 x+2\right)^2 \leq\left(x^2+3\right)^2 \\ & \left(x^2-4 x+2\right)^2-\left(x^2+3\right)^2 \leq 0 \\ & \left(2 x^2-4 x+5\right)(-4 x-1) \leq 0 \\ & -4 x-1 \leq 0 \rightarrow x \geq-\frac{1}{4} \\ & {\left[-\frac{1}{4}, \infty\right)}\end{aligned}$

Hence, the answer is the $\left[-\frac{1}{4}, \infty\right)$



Frequently Asked Questions (FAQs)

Q: What is the significance of the open interval in the range of arccsc(x)?
A:
The open interval in the range of arccsc(x), [-π/2, 0) ∪ (0, π/2], indicates that the function never actually reaches 0. This reflects the fact that cosecant is undefined when the angle is 0 (or any multiple of π).
Q: How does the domain of arctan(x) relate to the concept of surjective functions?
A:
The domain of arctan(x) being all real numbers makes it a surjective (onto) function. This means that every element in its range (-π/2, π/2) is mapped to by at least one element in its domain, covering all possible output values.
Q: Why is the range of arccot(x) (0, π) instead of (-∞, ∞) like its original function cotangent?
A:
The range of arccot(x) is restricted to (0, π) to ensure a unique inverse function. While cotangent can produce any real number output, its inverse must map each cotangent value to a unique angle to be well-defined.
Q: How does the domain of arcsec(x) relate to the concept of even functions?
A:
The domain of arcsec(x), (-∞, -1] ∪ [1, ∞), is symmetric about the y-axis, reflecting the even nature of the secant function. This symmetry means that arcsec(-x) = π - arcsec(x) for all x in its domain.
Q: What is the relationship between the ranges of arcsin(x) and arccsc(x)?
A:
The ranges of arcsin(x) and arccsc(x) are the same: [-π/2, π/2], excluding 0 for arccsc(x). This reflects the complementary nature of sine and cosecant, with arccsc(x) having a split range due to its undefined point at x = 0.
Q: How does the concept of continuity apply to the domain and range of arccos(x)?
A:
Arccos(x) is continuous over its entire domain [-1, 1], and its range [0, π] is a connected interval. This continuity reflects the smooth, unbroken nature of the inverse cosine function within its restricted domain and range.
Q: Why is the domain of arcsec(x) not simply [1, ∞) like the range of secant in the first quadrant?
A:
The domain of arcsec(x) is (-∞, -1] ∪ [1, ∞) to include both positive and negative secant values. This accounts for secant's behavior in both the first and second quadrants, where it takes on all values greater than or equal to 1 in magnitude.
Q: How does the range of arctan(x) relate to the concept of injective functions?
A:
The range of arctan(x), (-π/2, π/2), ensures that it is an injective (one-to-
Q: How does the range of arctan(x) reflect the behavior of the tangent function?
A:
The range of arctan(x), (-π/2, π/2), reflects the fact that tangent approaches infinity as the angle approaches π/2 and negative infinity as it approaches -π/2. The open interval indicates that these limit values are never actually reached.
Q: How does the range of arctan(x) relate to the concept of asymptotes?
A:
The range of arctan(x), (-π/2, π/2), relates to the horizontal asymptotes of the tangent function. As tan(x) approaches ±∞, arctan(x) approaches but never reaches ±π/2, reflecting these asymptotes.