Binomial inside Binomial

Binomial inside Binomial

Komal MiglaniUpdated on 02 Jul 2025, 08:02 PM IST

An expression with two terms is called the binomial expansion. In the case of higher degree expression, it is difficult to calculate it manually. In these cases, Binomial theorem can be used to calculate it. Binomial theorem is used for the expansion of a binomial expression with a higher degree. Binomial coefficients are the coefficients of the terms in the Binomial expansion. Binomial theorem is proved using the concept of mathematical induction. Apart from Mathematics, Binomial theorem is also used in statistical and financial data analysis.

Binomial inside Binomial
Binomial inside Binomial

This article is about the binomial inside binomial which falls under the broader category of Binomial Theorem and its applications. It is one of the important topics for competitive exams.

Binomial Theorem

Statement:

If $n$ is any positive integer, then

$ (a + b)^n = \binom{n}{0} a^n + \binom{n}{1} a^{n - 1} b + \binom{n}{2} a^{n - 2} b^2 + \dots + \binom{n}{n - 1} a b^{n - 1} + \binom{n}{n} b^n $

Proof:

The proof is obtained by applying the principle of mathematical induction.

Let the given statement be:

$ P(n): (a + b)^n = \binom{n}{0} a^n + \binom{n}{1} a^{n-1} b + \binom{n}{2} a^{n-2} b^2 + \dots + \binom{n}{n-1} a b^{n-1} + \binom{n}{n} b^n $

For $ n = 1 $, we have:

$ P(1): (a + b)^1 = \binom{1}{0} a^1 + \binom{1}{1} b^1 = a + b $

Thus, $ P(1) $ is true.

Suppose $ P(k) $ is true for some positive integer $ k $, i.e.,

$ (a + b)^k = \binom{k}{0} a^k + \binom{k}{1} a^{k-1} b + \binom{k}{2} a^{k-2} b^2 + \dots + \binom{k}{k} b^k$

We shall prove that $ P(k + 1) $ is also true, i.e.,

$ (a + b)^{k + 1} = \binom{k+1}{0} a^{k+1} + \binom{k+1}{1} a^k b + \binom{k+1}{2} a^{k-1} b^2 + \dots + \binom{k+1}{k+1} b^{k+1} $

Now,

$ (a + b)^{k + 1} = (a + b)(a + b)^k $

$ = (a + b) \left[\binom{k}{0} a^k + \binom{k}{1} a^{k-1} b + \binom{k}{2} a^{k-2} b^2 + \dots + \binom{k}{k-1} a b^{k-1} + \binom{k}{k} b^k\right] $

[from (1)]

$ = \binom{k}{0} a^{k+1} + \binom{k}{1} a^k b + \binom{k}{2} a^{k-1} b^2 + \dots + \binom{k}{k-1} a^2 b^{k-1} + \binom{k}{k} a b^k $

$ + \binom{k}{0} a^k b + \binom{k}{1} a^{k-1} b^2 + \binom{k}{2} a^{k-2} b^3 + \dots + \binom{k}{k-1} a b^k + \binom{k}{k} b^{k+1} $

[by actual multiplication]

$ = \binom{k}{0} a^{k+1} + (\binom{k}{1} + \binom{k}{0}) a^k b + (\binom{k}{2} + \binom{k}{1}) a^{k-1} b^2 + \dots + (\binom{k}{k} + \binom{k}{k-1}) a b^k + \binom{k}{k} b^{k+1} $

[grouping like terms]

$ = \binom{k+1}{0} a^{k+1} + \binom{k+1}{1} a^k b + \binom{k+1}{2} a^{k-1} b^2 + \dots + \binom{k+1}{k} a b^k + \binom{k+1}{k+1} b^{k+1}$

(by using $ \binom{k+1}{0} = 1 $, $ \binom{k}{r} + \binom{k}{r-1} = \binom{k+1}{r} $, and $ \binom{k}{k} = 1 = \binom{k+1}{k+1} $)

Thus, it has been proved that $ P(k + 1) $ is true whenever $ P(k) $ is true. Therefore, by the principle of mathematical induction, $ P(n) $ is true for every positive integer $ n $.


Binomial Coefficient

The combination $\binom{n}{r}$ or ${ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}$ occuring in the Binomial theorem is called a Binomial coefficient, where $\binom{n}{r}=C(n, r)={ }^n C_r=\frac{n!}{r!(n-r)!}$.

Binomial inside Binomial

Let's see some examples to understand about combining binomials.

How do we find the summation of the series where upper index also varies e.g., $\sum_{r=0}^n{ }^{n+r} C_r={ }^n C_0+{ }^{n+1} C_1+{ }^{n+2} C_2+\cdots+{ }^{n+n} C_n$

[put value of $r=0,1,2, \ldots \ldots$, upto n]

By using the property of the binomial coefficient

$ { }^n C_r={ }^n C_{n-r} $

$\sum_{r^n=0}^{\mathrm{n}+{ }^{\mathrm{r}}} \mathrm{C}_{\mathrm{r}}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{n}}+{ }^{\mathrm{n}+1} \mathrm{C}_{\mathrm{n}}+{ }^{\mathrm{n}+2} \mathrm{C}_{\mathrm{n}}+\cdots+{ }^{2 \mathrm{n}} \mathrm{C}_{\mathrm{n}} $

$\text { Now as }{ }^{\mathrm{n}} C_n={ }^{n+1} C_{n+1}=1 \text {, so we can write } $

$\sum_{\mathrm{r}=0}^{\mathrm{n}}{ }^{\mathrm{n}+\mathrm{r}} \mathrm{C}_{\mathrm{r}}={ }^{\mathrm{n}+1} \mathrm{C}_{\mathrm{n}+1}+{ }^{\mathrm{n}+1} \mathrm{C}_{\mathrm{n}}+{ }^{\mathrm{n}+2} \mathrm{C}_{\mathrm{n}}+\cdots+{ }^{2 \mathrm{n}} \mathrm{C}_{\mathrm{n}} $

Now first $2$ terms can be combined by using the property

${ }^n C_r+{ }^n C_{r-1}={ }^{n+1} C_r $

$\sum_{r=0}^{\mathrm{n}}{ }^{\mathrm{n}+\mathrm{r}} C_r={ }^{\mathrm{n}+2} C_{\mathrm{n}+1}+{ }^{\mathrm{n}+2} C_n+\cdots+{ }^{2 n} C_n $

now first two terms can again be combined using the same property, and this process can be continued till last term is also combined

$ ={ }^{2 n+1} C_{n+1} $

Recommended Videos Based on Binomial Inside Binomial:

Solved Examples Based on Binomial inside Binomial

Example 1: If $(1+x)^n=C_0+C_1 x \ldots \ldots+C_n x^n$, then

$C_0{ }^{2 n} C_n-C_1 \cdot{ }^{2 n-1} C_n+C_2 \cdot{ }^{2 n-2} C_n-C_3 \cdot{ }^{2 n-3} C_n+\ldots+(-1)^n C_n \cdot{ }^n C_n $ is equal to

1) $\frac{1}{n}$

2) $2^{-n}$

3) $2^n$

4) $1 $

Solution:

Binomial Inside Binomial

$C_0 \cdot{ }^{2 n} C_n-C_1 \cdot{ }^{2 n-1} C_n+C_2 \cdot{ }^{2 n-2} C_n-C_3 \cdot{ }^{2 n-3} C_n+\ldots+(-1)^n C_n \cdot{ }^n C_n $

$=\text { Coefficient of }{\underset{\sim}{x}}^n \text { in } $

${\left[C_0(1+x)^{2 n}-C_1(1+x)^{2 n-1}+C_2(1+x)^{2 n-2}\right.} $

$\left.\quad-C_3(1+x)^{2 n-3}+\ldots+(-1)^n{ }^n C_n \cdot(1+x)^n\right] $

Coefficient of $x_n$ in

$ (1+x)^n\left[C_0(1+x)^n-C_1(1+x)^{n-1}+C_2(1+x)^{n-2}\right. $

$\left.-C_3(1+x)^{n-3}+\ldots+(-1)^n \cdot{ }^n C_n \cdot 1\right] $

$=\text { Coefficient of }{\underset{\sim}{n}}^n \text { in }(1+x)^n\left[((1+x)-1)^n\right] $

$=\text { Coefficient of }{\underset{\sim}{\mathrm{X}}}_{\mathrm{n}} \text { in }(1+x)^n \cdot x^n $

$=\text { Constant term in }(1+x)^n=1 $

Hence, the answer is option 4.

Example 2: In a hockey series between teams $X$ and $Y$, they decide to play till a team wins ' $m$ ' matches. Then the number of ways in which team $X$ wins is

1) $2^m$

2) ${ }^{2 m} P_m$

3) ${ }^{2 m} C_m$

4) None of these

Solution:

Theorem of Combination-

Each of the different groups or selections which can be made by taking r things from $n$ things is called a combination.

$ { }^n c_r=\frac{(n)!}{r!(n-r)!} $

wherein

Where $1 \leq r \leq n$

Team X will win if it wins $(m+r)$ th match and

wins $m-1$ match from the first $m+r-1$ matches,

Thus, the total number of ways $=\sum_{r=0}^m{ }^{m+r-1} C_{m-1}=\frac{{ }^{2 m} C_m}{2}$

Hence, the answer is option 4.

Example 3: The sum $S_n=\sum_{k=0}^n(-1)^k \cdot{ }^{3 n} C_k$ where $\mathrm{n}=1,2$, is

1) $(-1)^n \cdot{ }^{3 n-1} C_{n-1}$

2) $(-1)^n \cdot{ }^{3 n-1} C_n$

3) $(-1)^n \cdot{ }^{3 n-1} C_{n+1}$

4) None of these

Solution:

$\mathrm{S}_{\mathrm{n}}={ }^{3 n} \mathrm{C}_0-{ }^{3 n} \mathrm{C}_1+{ }^{3 n} \mathrm{C}_2+\ldots \ldots+(-1)^n \cdot{ }^{3 n} \mathrm{C}_{\mathrm{n}} $

$\text { But }{ }^{3 n} \mathrm{C}_0={ }^{3 n-1} \mathrm{C}_0 $

$-{ }^{3 n} \mathrm{C}_1=--{ }^{3 n-1} \mathrm{C}_0-{ }^{3 n-1} \mathrm{C}_1 $

${ }^{3 n} \mathrm{C}_2={ }^{3 n-1} \mathrm{C}_1+{ }^{3 n-1} \mathrm{C}_2 $

$-{ }^{3 n} \mathrm{C}_3=--{ }^{3 n-1} C_2-{ }^{3 n-1} \mathrm{C}_3 $

$(-1)^n \cdot{ }^{3 n} C_n=(-1)^n \cdot{ }^{3 n-1} C_{n-1}+(-1)^n \cdot{ }^{3 n-1} C_n $

On adding we get

$ S_n=(-1)^n \cdot{ }^{3 n-1} C_n $

Hence, the answer is option (2).

Example 4: The value of $ { }^{50} C_4+\sum_{r=1}^6{ }^{56-r} C_3 \text { is } $

1) ${ }^{55} \mathrm{C}_3$

2) ${ }^{55} C_4$

3) ${ }^{56} C_4$

4) ${ }^{56} C_3$

Solution:

$ { }^{50} C_4+\left({ }^{50} C_3+{ }^{51} C_3+{ }^{52} C_3+\ldots \ldots+{ }^{55} C_3\right) $

Taking the first two terms together and adding them and following the same pattern, we get ${ }^{56} C_4$.

$\left[\mathrm{As}^n C_r+{ }^n C_{r-1}={ }^{n+1} C_r\right] $

Hence, the answer is option (3).

Example 5: The value of the expression ${ }^{(n+1)} C_2+2\left[{ }^2 C_2+{ }^3 C_2+{ }^4 C_2+\ldots . .+{ }^n C_2\right]$ is:

1) $\sum n^3$

2) $\sum n^2$

3) $\sum n$

4) $\frac{n+1}{2}$

Solution:

expression

$ ={ }^{(n+1)} C_2+2\left[{ }^2 C_2+{ }^3 C_2+{ }^4 C_2+\ldots \ldots .\right] $

$={ }^{(n+1)} C_2+2\left[{ }^4 C_3+{ }^4 C_2+\ldots \ldots . .\right] $

$={ }^{(n+1)} C_2+2\left[{ }^5 C_3+{ }^5 C_2+\ldots \ldots .+{ }^n C_2\right] $

$={ }^{(n+1)} C_2+2{ }^{(n+1)} C_3 \text { ultimately } $

$={ }^{(n+1)} C_2+{ }^{(n+1)} C_3+{ }^{(n+1)} C_3 $

$={ }^{(n+2)} C_3+{ }^{(n+1)} C_3=\frac{(n+2)(n+1) n}{6}+\frac{(n+1) n(n-1)}{6} $

$ =\frac{(n)(n+1)(2 n+1)}{6}=\sum n^2 $

Hence, the answer is option (2).



Frequently Asked Questions (FAQs)

Q: How does the presence of a binomial inside a binomial affect the symmetry of the expansion compared to a simple binomial expansion?
A:
The presence of an inner binomial often reduces the symmetry:
Q: What is the relationship between the coefficients in the expansion of (a + (b + c))^n and those in (a + b + c)^n?
A:
While both expansions will have some coefficients in common:
Q: How do you determine the degree of the resulting polynomial when expanding a binomial inside a binomial?
A:
To determine the degree:
Q: What is the effect of having a constant term in the inner binomial, like (x + (y + 1))^n?
A:
A constant in the inner binomial doesn't change the expansion process but affects the final terms:
Q: How does the concept of binomials inside binomials extend to polynomials inside binomials, like (x + (ay^2 + by + c))^n?
A:
The approach is similar:
Q: What real-world applications involve calculations with binomials inside binomials?
A:
Real-world applications include:
Q: How does the presence of a binomial inside a binomial affect the growth rate of terms in the expansion as n increases?
A:
The growth rate of terms increases more rapidly than in a simple binomial expansion. As n increases:
Q: What is the role of the Binomial Theorem in probability problems involving nested events?
A:
In probability, binomials inside binomials can represent nested events. The Binomial Theorem helps calculate probabilities of combined outcomes. For example, (p + (1-p))^n might represent n trials where each trial has a sub-structure of possible outcomes.
Q: How does factoring play a role in simplifying expansions of binomials inside binomials?
A:
Factoring can help simplify complex expansions by identifying common terms. After expanding, look for common factors among terms. Sometimes, factoring can reveal a simpler structure or a recognizable pattern in the expansion.
Q: What strategies can be used to mentally estimate the result of expanding a binomial inside a binomial without full calculation?
A:
To mentally estimate: