Results on Binomial Theorem of any Index

Results on Binomial Theorem of any Index

Komal MiglaniUpdated on 02 Jul 2025, 08:02 PM IST

An expression with two terms is called the binomial expansion. In the case of higher degree expression, it is difficult to calculate it manually. In these cases, Binomial theorem can be used to calculate it. Binomial theorem is used for the expansion of a binomial expression with a higher degree. Binomial coefficients are the coefficients of the terms in the Binomial expansion. Binomial theorem is proved using the concept of mathematical induction. Apart from Mathematics, Binomial theorem is also used in statistical and financial data analysis.

Results on Binomial Theorem of any Index
Results on Binomial Theorem of any Index

This article is about the binomial inside binomial which falls under the broader category of Binomial Theorem and its applications. It is one of the important topics for competitive exams.

Binomial Theorem for any index

Statement: If $n$ is a rational number and $x$ is a real number such that $|\mathrm{x}|<1$, then,

$ (1+x)^n=1+n x+\frac{n(n-1)}{2!} x^2+\frac{n(n-1)(n-2)}{3!} x^3+\ldots \ldots+\frac{n(n-1)(n-2) \ldots \ldots(n-r+1)}{r!} x^r \ldots $

Proof:

Let $f(x)=(1+{{x}})^{{n}}=a_0+a_1 x+a_2 x^2+\ldots+a_1 x^n+\ldots$

$ {{f}(0)}=(1+{{0}} {{{n}}}=1 $

Differentiating (1) w.r.t. $x$ on both sides, we get

$ =a_1+2 a_2 x+3 a_3 x^3+4 a_4 x^3+\ldots+r a_1 x^r-1+\ldots(2) $

Put $x=0$, we get $n=a_1$

Differentiating (2) w.r.t. $\times$ on both sides, we get

$ =2 a_2+6 a_3 x+12 a_4 x^2+\ldots+r(r-1) a_4 x^h-2+\ldots $

Put $x=0$, we get $a_2=[n(n-1)] / 2$ !

Differentiating (3), w.r.t. x on both sides, we get

Put $x=0$, we get $a_3=[n(n-1)(n-2)] / 3$ !

Similarly, we get $a_4=[n(n-1)(n-2)(n-3)] / r!$ and so on

$ \therefore a_n=[n(n-1)(n-2) \ldots(n-r+1)] / r! $

Putting the values of $a_0, a_1, a_2, a_3, \ldots, a_n$ obtained in (1), we get

$ \left(1+x n=1+n x+[\{n(n-1)\} / 2!] x^2+[\{n(n-1)(n-2)\} / 2!] x^3+\ldots+[\{n(n-1)(n-2) \ldots(n-r+\right. $

1) $\} / r!] x^{[}+\ldots$

Hence proved the Binomial theorem of any index.

Results on Binomial Theorem of any Index

$ (1+x)^n=1+n x+\frac{n(n-1)}{2!} x^2+\frac{n(n-1)(n-2)}{3!} x^3+\ldots \ldots+\frac{n(n-1)(n-2) \ldots \ldots(n-r+1)}{r!} x^r \ldots $

In the above expansion replace ' $n$ ' with ' $-n$ '

$ (1+\mathrm{x})^{-\mathrm{n}}=1+(-\mathrm{n}) \mathrm{x}+\frac{(-\mathrm{n})((-\mathrm{n})-1)}{2!} \mathrm{x}^2+\frac{(-\mathrm{n})((-\mathrm{n})-1)((-\mathrm{n})-2)}{3!} \mathrm{x}^3+\ldots \ldots $

$\ldots+\frac{(-n)((-n)-1)((-n)-2) \ldots((-n)-r+1)}{r!} x^r \ldots \ldots \infty $

$\Rightarrow(1+\mathrm{x})^{-\mathrm{n}}=1-\mathrm{nx}+\frac{\mathrm{n}(\mathrm{n}+1)}{2!} \mathrm{x}^2-\frac{\mathrm{n}(\mathrm{n}+1)(\mathrm{n}+2)}{3!} \mathrm{x}^3+\ldots \ldots $

$\ldots+(-1)^r \frac{n(n+1)(n+2) \ldots .(n+r-1)}{r!} x^r \ldots \ldots . \infty $

If $-n$ is a negative integer (so that $n$ is a positive integer), then we can re-write this expression as

$ =1-{ }^n C_1 x+{ }^{n+1} C_2 x^2-{ }^{n+2} C_3 x^3+\cdots+{ }^{n+r-1} C_r(-x)^r+\cdots $

$ (1-x)^{-n}=1+n x+\frac{n(n+1)}{2!} x^2+\frac{n(n+1)(n+2)}{3!} x^3+\cdots $

$+\frac{n(n+1)(n+2) \cdots(n+r-1)}{r!} x^r+\cdots $

If $-n$ is a negative integer (so that $n$ is a positive integer), then we can re-write this expression as

$ =1+{ }^n C_1 x+{ }^{n+1} C_2 x^2+{ }^{n+2} C_3 x^3+\cdots+{ }^{n+r-1} C_r(x)^r+\cdots $

Important Note:

The coefficient of $x^5$ in $(1-x)^{-n}$, (when $n$ is a natural number) is ${ }^{n+r-1} C_r$

Some Important Binomial Expansion

1. $(1+x)^{-1}=1-x+x^2-x^3+\cdots$

2. $(1-x)^{-1}=1+x+x^2+x^3+\cdots$

3. $(1+x)^{-2}=1-2 x+3 x^2-4 x^3+\cdots$

4. $(1-x)^{-2}=1+2 x+3 x^2+4 x^3+\cdots$

Summary

Binomial theorem is used for the expansion of a binomial expression with a higher degree. Binomial coefficients are the coefficients of the terms in the Binomial expansion. Binomial coefficients of the term equidistant from the beginning and end are equal. Understanding the product of two binomial coefficients gives an idea to solve more complex problems not only in calculus, statistics, data analysis etc.

Recommended Video Based on Results on Binomial Theorem of any Index:

Solved Examples based on Results on Binomial Theorem of any Index

Example 1: If the expansion in powers of $x$ of the function $\frac{1}{(1-a x)(1-b x)}$ is $a_0+a_1 x+a_2 x^2+a_3 x^3+\ldots \ldots$. , then $a_n$ is

1) $\frac{b^n-a^n}{b-a}$

2) $\frac{a^n-b^n}{b-a}$

3) $\frac{a^{n+1}-b^{n+1}}{b-a}$

4) $\frac{b^{n+1}-a^{n+1}}{b-a}$

Solution:

As we learned,

$ (1-x)^{-n}=1+n x+\frac{n(n+1)}{2!} x^2+\frac{n(n+1)(n+2)}{3!} x^3+--- $

And

$ (1+x)^{-1}=1-x+x^2-x^3+\cdots $

Now,

Expansion of $(1-a x)^{-1}(1-b x)^{-1}$

$ \Rightarrow\left(1+a x+a^2 x^2+a^3 x^3+\ldots \ldots \ldots+a^n x^n+\ldots \ldots\right)\left(1+b x+b^2 x^2+\ldots \ldots \ldots+b^n x^n+\ldots \ldots\right) $

Coefficient of $x_n \Rightarrow a^n+a^{n-1} b+a^{n-2} b^2+\ldots \ldots \ldots+b^n$

$\Rightarrow \frac{b^{n+1}-a^{n+1}}{b-a}$ (Using sum of GP formula)

Hence, the answer is option (4).

Example 2: Let $[x]$ denote greatest integer less than or equal to x . If for $n \in N$, $\left(1-x+x^3\right)^n=\sum_{j=0}^{3 n} a_j x^j, \sum_{\text {then }}^{\left[\frac{3 n}{2}\right]} a_{2 j}+4 \sum_{j=0}^{\left[\frac{3 n-1}{2}\right]} a_{2 j+1}$ is equal to:

1) $2$

2) $n$

3) $1$

4) $2^{n-1}$

Solution:

$ \left(1-x+x^3\right)^n=\sum_{j=0}^{3 n} a_j x^j $

$\left(1-x+x^3\right)^n=a_0+a_1 x+a_2 x^2 \ldots \ldots+a_{3 n} x^{3 n} $

$\sum_{j=0}^{\left[\frac{3 n}{2}\right]} a_{2 j}=\text { Sum of } a_0+a_2+a_4 \ldots \ldots . $

${\left[\frac{3 n-1}{2}\right]} $

$\sum_{j=0} a_{2 j+1}=\text { Sum of } a_1+a_3+a_5 \ldots \ldots $

put $x=1$

$1=a_0+a_1+a_2+a_3 \ldots \ldots \ldots+a_{3 a}$

Put $\mathrm{x}=-1$

$ 1=a_0-a_1+a_2-a_3 \ldots \ldots \ldots+(-1)^{3 n} a_{3 n} $

Solving (A) and (B)

$ a_0+a_2+a_4 \ldots \ldots=1 $

$a_1+a_3+a_5 \ldots \ldots=0 $

$\sum_{j=0}^{\left[\frac{a}{2}\right]} a_{2 j}+4 \sum_{j=0}^{\left[\frac{s_n-1}{2}\right]} a_{2 j+1}=1 $

Hence, the answer is option 1.

Example 3: If $x$ is so small that $x^3$ and higher powers of $x$ may be neglected, then $\frac{(1+x)^{3 / 2}-\left(1+\frac{1}{2} x\right)^3}{(1-x)^{1 / 2}}$ may be approximated as:

1) $3 x+\frac{3}{8} x^2$

2) $1-\frac{3}{8} x^2$

3) $\frac{x}{2}-\frac{3}{8} x^2$

4) $-\frac{3}{8} x^2$

Solution:

As we learned,

$ (1+x)^n=1+n x+\frac{n(n-1) x^2}{2!}+\frac{n(n-1)(n-2) x^3}{3!}+\cdots \cdots $

Now,

$ \frac{\left((1+x)^{3 / 2}-\left(1+\frac{x}{2}\right)^3\right)}{(1-x)^{1 / 2}} $

$ \Rightarrow \frac{1+\frac{3 x}{2}+\frac{3}{2} \cdot \frac{1}{2} \cdot \frac{x^2}{2}-1-\frac{3 x}{2}-\frac{3 \times 2}{2!} \frac{x^2}{4}}{(1-x)^{1 / 2}} $

$=\left(\frac{3 x^2}{8}-\frac{3 x^2}{4}\right)(1-x)^{-1 / 2}=\frac{-3 x^2}{8}(1-x)^{-1 / 2} $

$=\frac{-3 x^2}{8}\left(1+\frac{x}{2}+\ldots\right) $

$=\frac{-3 x^2}{8}+\frac{-3 x^3}{16}+\ldots $

So, given expression $=\frac{-3 x^2}{8}$ (as powers higher than 2 are neglected)

Hence, the answer is option (4).

Example 4: If $0<x<1$, then the first negative term in the expansion of $(1+x)^{41 / 7}$ is:

1) $5^{\circ}$ term

2) $8^n$ term

3) $6^{\text {n }}$ term

4) $7^*$ term

Solution:

$ (1+x)^{\frac{11}{r}} $

$T_{r+1}=\frac{n(n-1)(n-2) \ldots \ldots \ldots(n-r+1)}{r!} x^r $

For the first negative term, $(n-r+1)<0$

$n=\frac{41}{7}$

$r>6.85$

so, if $\mathrm{r}=7$

Then it would be the 8 th term

Hence, the answer is option (2).

Example 5: If the expansion in the power of $x$ of the function $\frac{1}{(1-a x)(1-b x)}$ is $a_0+a_1 x+a_2 x^2+\ldots$, then $a_3$ is

1) ${ }^{a_n}=\frac{a^n-b^n}{a-b}$

2) $a_n=\frac{a^{n+1}-b^{n+1}}{a-b}$

3) $a_n=\frac{a^{n-1}-b^{n-1}}{a-b}$

4) $1$

Solution:

Now

$ (1-a x)^{-1}(1-b x)^{-1}=\left(1+a x+a^2 x^2+\ldots\right)\left(1+b x+b^2 x^2+\ldots\right) $

In the equation $a_0+a_1 x+a_2 x^2+\ldots, \mathrm{a}_n$ is the coefficient of $x^n$.

Coefficient of $x^n=a^n+a^{n-1} b+\ldots+a b^{n-1}+b^n$

$a^n+a^{n-1} b+\ldots a b^{n-1}+b^n$ is a GP with a common ratio $\frac{b}{a}$ and $(\mathrm{n}+1)$ terms Sum of the series is

$ \frac{a^n\left[\left(\frac{b}{a}\right)^{n+1}-1\right]}{\frac{b}{a}-1} $

$\frac{a^n \frac{\left.b^{n+1}-a^{n+1}\right]}{a^{n+1}}}{\frac{b-a}{a}} $

$a_n=\frac{a^{n+1}-b^{n+1}}{a-b} $

Hence, the answer is option 2.


Frequently Asked Questions (FAQs)

Q: What is the significance of the Binomial Theorem of any index in the study of fractional differential equations?
A:
The theorem is fundamental in the theory of fractional differential equations, providing a way to expand and manipulate expressions involving fractional derivatives and integrals. It allows for the development of solution methods and the analysis of properties of these equations, which have applications in various fields of science and engineering.
Q: How does the Binomial Theorem of any index contribute to the field of mathematical biology?
A:
In mathematical biology, the theorem is used in modeling population dynamics and in analyzing allometric scaling laws. It provides a tool for manipulating expressions involving fractional powers, which often arise in describing biological growth and metabolism.
Q: What is the relationship between the Binomial Theorem of any index and the study of anomalous diffusion?
A:
The theorem is crucial in modeling anomalous diffusion processes, where the mean square displacement grows non-linearly with time. It allows for the expansion of expressions involving fractional powers of time, which characterize these non-standard diffusion phenomena.
Q: How can the Binomial Theorem of any index be applied to problems in signal processing?
A:
In signal processing, the theorem is used in the analysis of fractional Fourier transforms and in the design of fractional-order filters. It provides a way to manipulate expressions involving non-integer powers of frequency or time.
Q: How can the Binomial Theorem of any index be applied to problems in control theory?
A:
In control theory, the theorem is used in the analysis of feedback systems and in the design of controllers. It allows for the expansion of transfer functions and the manipulation of expressions involving fractional powers of complex variables.
Q: What is the relationship between the Binomial Theorem of any index and the study of partial differential equations?
A:
The theorem is useful in solving certain types of partial differential equations, particularly those involving fractional derivatives or non-integer powers of differential operators. It provides a tool for expanding complex expressions that arise in these equations.
Q: How does the Binomial Theorem of any index contribute to the field of cryptography?
A:
In cryptography, the theorem is used in certain algorithms for modular exponentiation, which is crucial in many encryption schemes. It provides efficient methods for computing powers modulo large numbers.
Q: What is the significance of the Binomial Theorem of any index in the study of random walks and diffusion processes?
A:
The theorem is fundamental in analyzing random walks and diffusion processes, particularly in deriving probability distributions and moments. It allows for the expansion of expressions involving fractional powers of time or distance.
Q: What is the connection between the Binomial Theorem of any index and the theory of critical phenomena?
A:
In the study of critical phenomena, the theorem is used in renormalization group calculations and in deriving scaling laws. It allows for the systematic expansion of expressions near critical points, where power-law behaviors dominate.
Q: How does the Binomial Theorem of any index relate to the concept of fractional-order systems in engineering?
A:
The theorem is essential in the analysis and design of fractional-order systems, which are described by differential equations of non-integer order. It provides a mathematical foundation for manipulating expressions involving fractional derivatives and integrals.