How do epidemiologists figure out the increase or decrease of an infection? It is all with the help of differentiation. Differentiation is a concept of rate of change. Differentiation is used to calculate the rate of change of one quantity with respect to another quantity.
Differentiation and integration are important parts of Calculus, which applies to measuring the change in the function at a certain point. Mathematically, it forms a powerful tool by which slopes of functions are determined, the maximum and minimum of functions found, and problems on motion, growth, and decay, to name a few. These concepts of differentiation have been broadly applied in branches of mathematics, physics, engineering, economics, and biology.
JEE Main: Study Materials | High Scoring Topics | Preparation Guide
JEE Main: Syllabus | Sample Papers | Mock Tests | PYQs
This article is about the concept of differentiation class 11. This concept falls under the broader category of Calculus. It is not only essential for board exams but also for competitive exams like the Joint Entrance Examination (JEE Main), and other entrance exams such as SRMJEE, BITSAT, WBJEE, BCECE, and more. Over the last five years of the JEE Main exam (from 2013 to 2023), a total of nine questions have been asked on this concept, including one in 2013, one in 2018, two in 2019, three in 2020, one in 2021, and one in 2022.
The process of finding the derivative is called differentiation. Let $f$ be defined on an open interval $I \subseteq$ containing the point $x_0$, and suppose that $\lim _{\Delta x \rightarrow 0} \frac{f\left(x_0+\Delta x\right)-f\left(x_0\right)}{\Delta x}$ exists. Then $f$ is said to be differentiable at $x_0$ and the derivative of $f$ at $x_0$, denoted by $f^{\prime}\left(x_0\right)$, is given by
$
f^{\prime}\left(x_0\right)=\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{f\left(x_0+\Delta x\right)-f\left(x_0\right)}{\Delta x}
$
For all $x$ for which this limit exists,
$f^{\prime}(x)=\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}$ is a function of $x$.
In addition to $f^{\prime}(x)$, other notations are used to denote the derivative of $y=f(x)$. The most common notations are $f^{\prime}(x), \frac{d y}{d x}, y^{\prime}, \frac{d}{d x}[f(x)], D_x[y]$ or $D y$ or $y_1$. Here $\frac{d}{d x}$ or $D$ is the differential operator.
Differentiation formulas include differentiation of some basic functions and the rules of differentiation.
Differentiation of some basic functions includes differentiation of a constant, basic polynomials, logarithms and trigonometric functions.
Differentiation of a Constant
Differentiation of Basic Polynomials
The differentiation of some basic polynomials are
Differentiation of Logarithms
The differentiation of logarithms are
Differentiation of Trigonometric Functions
The differentiation of trigonometric functions are
Differentiation of Inverse Trigonometric Functions
The important rules of differentiation are
Let $f(x)$ and $g(x)$ be differentiable functions and $k$ be a constant. Then each of the following rules holds
The derivative of the sum of a function $f$ and a function $g$ is the same as the sum of the derivative of $f$ and the derivative of $g$.
$
\frac{d}{d x}(f(x)+g(x))=\frac{d}{d x}(f(x))+\frac{d}{d x}(g(x))
$
In general,
$
\frac{d}{d x}(f(x)+g(x)+h(x)+\ldots \ldots)=\frac{d}{d x}(f(x))+\frac{d}{d x}(g(x))+\frac{d}{d x}(h(x))+\ldots \ldots
$
The derivative of the difference of a function $f$ and $a$ function $g$ is the same as the difference of the derivative of $f$ and the derivative of $g$.
$
\begin{aligned}
& \frac{d}{d x}(f(x)-g(x))=\frac{d}{d x}(f(x))-\frac{d}{d x}(g(x)) \\
& \frac{d}{d x}(f(x)-g(x)-h(x)-\ldots \ldots)=\frac{d}{d x}(f(x))-\frac{d}{d x}(g(x))-\frac{d}{d x}(h(x))-\ldots \ldots
\end{aligned}
$
The derivative of a constant $k$ multiplied by a function $f$ is the same as the constant multiplied by the derivative of $f$
$
\frac{d}{d x}(k f(x))=k \frac{d}{d x}(f(x))
$
Let $f(x)$ and $g(x)$ be differentiable functions. Then,
$
\frac{d}{d x}(f(x) g(x))=g(x) \cdot \frac{d}{d x}(f(x))+f(x) \cdot \frac{d}{d x}(g(x))
$
This means that the product differentiation of two functions is the derivative of the first function times the second function plus the derivative of the second function times the first function.
Extending the Product Rule
If three functions are involved, i.e let $k(x)=f(x) \cdot g(x) \cdot h(x)$
Let us have a function $\mathrm{k}(\mathrm{x})$ as the product of the function $\mathrm{f}(\mathrm{x}), \mathrm{g}(\mathrm{x})$ and $\mathrm{h}(\mathrm{x})$. That is, $k(x)=(f(x) \cdot g(x)) \cdot h(x)$. Thus,
$
k^{\prime}(x)=\frac{d}{d x}(f(x) g(x)) \cdot h(x)+\frac{d}{d x}(h(x)) \cdot(f(x) g(x))
$
[By applying the product rule to the product of $f(x) g(x)$ and $h(x)$.]
$
\begin{aligned}
& =\left(f^{\prime}(x) g(x)+g^{\prime}(x) f(x)\right) h(x)+h^{\prime}(x) f(x) g(x) \\
& =f^{\prime}(x) g(x) h(x)+f(x) g^{\prime}(x) h(x)+f(x) g(x) h^{\prime}(x)
\end{aligned}
$
Let $f(x)$ and $g(x)$ be differentiable functions. Then
$
\frac{d}{d x}\left(\frac{f(x)}{g(x)}\right)=\frac{g(x) \cdot \frac{d}{d x}(f(x))-f(x) \cdot \frac{d}{d x}(g(x))}{(g(x))^2}
$
OR
if $h(x)=\frac{f(x)}{g(x)}$, then $h^{\prime}(x)=\frac{f^{\prime}(x) g(x)-g^{\prime}(x) f(x)}{(g(x))^2}$
As we see in the following theorem, the derivative of the quotient is not the quotient of the derivatives.
If $u(x)$ and $v(x)$ are differentiable functions, then $u o v(x)$ or $u[v(x)] {\text { is also differentiable. }}$
If $y=u o v(x)=u[v(x)]$, then
$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} u\{v(x)\}}{\mathrm{d}\{v(x)\}} \times \frac{\mathrm{d}}{\mathrm{d} x} v(x)
$
is known as the chain rule. Or,
$
\text { If } y=f(u) \text { and } u=g(x) \text {, then } \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} u} \cdot \frac{\mathrm{d} u}{\mathrm{~d} x}
$
The chain rule can be extended as follows
If $y=[\operatorname{uovow}(x)]=u[v\{w(x)\}]$, then
$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d}[u[v\{w(x)\}]}{\mathrm{d} v\{w(x)\}} \times \frac{\mathrm{d}[v\{w(x)\}]}{\mathrm{d} w(x)} \times \frac{\mathrm{d}[w(x)]}{\mathrm{d} x}
$
Example 1: Let $y=\sin ^2 x+2 \cos ^3 2 x$, then $\mathrm{dy} / \mathrm{dx}$ equals
1) $
\sin 2 x+12 \sin 2 x \cos ^2 2 x
$
2) $
\cos ^{2 x}+6 \cos ^2 2 x
$
3) $
\sin 2 x-12 \sin 2 x \cos ^2 2 x
$
4) $
\cos ^{2 x}+6 \sin ^2 2 x
$
Solution:
The rule for differentiation-
The derivative of the sum or difference of two functions is the sum or difference of their derivatives.
$
\begin{aligned}
& \frac{d}{d x} f(x) \pm g(x)=\frac{d}{d x} f(x) \pm \frac{d}{d x} g(x) \\
& y=\sin ^2 x+2 \cos ^3 2 x \Rightarrow \frac{d y}{d x}=\frac{d}{d x}\left(\sin ^2 x+2 \cos ^3 2 x\right) \\
& =\frac{d}{d x} \sin ^2 x+\frac{d}{d x} 2 \cos ^3 2 x=\frac{d}{d x}(\sin x)^2+2 \frac{d}{d x}(\cos 2 x)^3 \\
& =\frac{d(\sin x)}{d x} \frac{d\left(\sin ^2 x\right)}{d(\sin x)}+2 \frac{d(\cos 2 x)^3}{d(\cos 2 x)} \cdot \frac{d(2 x)}{d x} \\
& =2 \sin x \cos x+2 * 3(\cos x)^2 *(-\sin 2 x) * 2 \\
& =\sin 2 x-12 \sin 2 x \cos ^2 x
\end{aligned}
$
Hence, the answer is the option 3.
Example 2: The value of $\log _e 2 \frac{d}{d x}\left(\log _{\cos x} \operatorname{cosec} x\right)$ at $x=\frac{\pi}{4}$ is
[JEE Main 2022]
1) $-2 \sqrt{2}$
2) $2 \sqrt{2}$
3) $-4$
4) $4$
Solution:
$
\begin{aligned}
& \log 2 \cdot \frac{d}{d x}\left(\frac{\log (\operatorname{cosec} x)}{\log (\cos x)}\right) \\
& =-\log 2 \cdot \frac{d}{d x}\left(\frac{\log (\sin x)}{\log (\cos x)}\right) \\
& =-\log 2 \cdot \frac{\log (\cos x) \cdot \frac{\cos x}{\sin x}-\log (\sin x) \frac{(-\sin x)}{\cos x}}{(\log \cos x)^2}
\end{aligned}
$
At $\mathrm{x}=\frac{\pi}{4}$
$
\begin{aligned}
& =-\log 2 \cdot \frac{\log \left(\frac{1}{\sqrt{2}}\right)+\log \left(\frac{1}{\sqrt{2}}\right)}{\left(\log \left(\frac{1}{\sqrt{2}}\right)\right)^2} \\
& =-\log 2 \cdot \frac{\left(2 \log \left(\frac{1}{\sqrt{2}}\right)\right)}{\left(\log \left(\frac{1}{\sqrt{2}}\right)\right)^2}
\end{aligned}
$
$\begin{aligned} & =\frac{-\log 2 \cdot 2}{\log \left(\frac{1}{\sqrt{2}}\right)} \\ & =\frac{-2 \log 2}{-\log (\sqrt{2})} \\ & =\frac{2 \log 2}{\frac{1}{2} \log 2} \\ & =4\end{aligned}$
Hence, the answer is the option (4).
Example 3: The minimum value of $\alpha$ for which the equation $\frac{4}{\sin x}+\frac{1}{1-\sin x}=\alpha$ has at least one solution in $\left(0, \frac{\pi}{2}\right)$ is
[JEE Main 2021]
1) $7$
2) $8$
3) $9$
4) $10$
Solution:
Let $f(x)=\frac{4}{\sin x}+\frac{1}{1-\sin x}$
$
y=\frac{4-3 \sin x}{\sin x(1-\sin x)}
$
Let $\sin \mathrm{x}=\mathrm{t}$ when $t \in(0,1)$.
$
y=\frac{4-3 t}{t-t^2}
$
$\begin{aligned} & \frac{d y}{d t}=\frac{-3\left(t-t^2\right)-(1-2 t)(4-3 t)}{\left(t-t^2\right)^2}=0 \\ & \Rightarrow 3 \mathrm{t}^2-3 \mathrm{t}-\left(4-11 \mathrm{t}+6 \mathrm{t}^2\right)=0 \\ & \Rightarrow 3 \mathrm{t}^2-8 \mathrm{t}+4=0 \\ & \Rightarrow 3 \mathrm{t}^2-6 \mathrm{t}-2 \mathrm{t}+4=0 \\ & \Rightarrow \mathrm{t}=\frac{2}{3} \quad \text { and } \quad \mathrm{t} \neq 2 \\ & \frac{4}{\sin x}+\frac{1}{1-\sin x}=\alpha \\ & \frac{12}{2}+\frac{3}{3-2}=\alpha \\ & \alpha=9\end{aligned}$
Hence, the answer is the option 3.
Example 4: Let $f$ and $g$ be differentiable functions on $R$ such that $f o g$ is the identity function. If for some $a, b \in \mathbf{R}, g^{\prime}(a)=5$ and $g(a)=b {\text { then }} f^{\prime}(b)$ is equal to [JEE Main 2020]
1) $\frac{2}{5}$
2) $5$
3) $1$
4) $\frac{1}{5}$
Solution:
Let $f$ and $g$ be functions. For all $x$ in the domain of $g$ for which $g$ is differentiable at $x$ and $f$ is differentiable at $g(x)$, the derivative of the composite function
$
\begin{aligned}
& h(x)=(f \circ g)(x)=f(g(x)) \text { Is given by } \\
& h^{\prime}(x)=f^{\prime}(g(x)) \cdot g^{\prime}(x)
\end{aligned}
$
Composites of Three or More Functions
For all values of $x$ for which the function is differentiable, if $k(x)=h(f(g(x)))$ Then,
$
\begin{aligned}
& k^{\prime}(x)=h^{\prime}(f(g(x))) \cdot f^{\prime}(g(x)) \cdot g^{\prime}(x) \\
& f(g(x))=x \\
& \Rightarrow f^{\prime}(g(x)) \cdot g^{\prime}(x)=1 \\
& P u t x=a \\
& \Rightarrow f^{\prime}(g(a)) g^{\prime}(a)=1 \\
& \Rightarrow f^{\prime}(b) \times 5=1 \Rightarrow f^{\prime}(b)=\frac{1}{5}
\end{aligned}
$
Example 5: If $f(x)=\sin ^{-1}\left(\frac{2 \times 3^x}{1+9^x}\right)$, then $f^{\prime}\left(-\frac{1}{2}\right)$ equals
[JEE Main 2018]
1) $-\sqrt{3} \log _e \sqrt{3}$
2) $\sqrt{3} \log \sqrt{3}$
3) $-\sqrt{3} \log _e 3$
4) $\sqrt{3} \log _e 3$
Solution:
As we learned,
Chain Rule for differentiation (indirect) -
Let $y=f(x)$ is not in standard form then
$
\frac{d y}{d x}=\frac{d y}{d u} \times \frac{d u}{d x}
$
Now
$\begin{aligned} & f(x)=\sin ^{-1}\left(\frac{2 \times 3^x}{1+9^x}\right) \\ & =2 \tan ^{-1} 3^x \\ & \because 2 \tan ^{-1} x=\sin ^{-1} \frac{2 x}{1+x^2} \quad \text { if }-1 \leq x \leq 1 \\ & \frac{d}{d u}(\arctan (u))=\frac{1}{u^2+1} \\ & \frac{d}{d x}\left(3^x\right)=\ln (3) \cdot 3^x \\ & f^{\prime}(x)=2 \times \frac{1}{1+\left(3^x\right)^2} \times 3^x \times \ln 3 \\ & f^{\prime}\left(\frac{-1}{2}\right)=2 \times \frac{1}{1+\left(3^{-1}\right)} \times 3^{\frac{-1}{2}} \times \ln 3 \\ & =2 \times \frac{3}{4} \times \frac{1}{\sqrt{3}} \times \ln 3 \\ & =\sqrt{3} \times \frac{1}{2} \ln 3\end{aligned}$
Hence, the answer is the option 2.
The 7 rules of differentiation are the Power Rule, Sum rule, Difference Rule, Constant Multiple Rule, Product Rule, Quotient Rule and Chain Rule.
The chain rule, states that the derivative of a composite function is the derivative of the outer function evaluated at the inner function times the derivative of the inner function.
The derivative of $2x$ is $2$.
The derivative of the sum of a function $f$ and a function $g$ is the same as the sum of the derivative of $f$ and the derivative of $g$.
The differentiation of sin inverse x is $\frac{d}{d x}\left(\sin ^{-1} x\right)=\frac{1}{\sqrt{1-x^2}}, x \neq \pm 1$
$\frac{1}{x}$ can be written as $x^{-1}$. Differentiation of $x^{-1}$ is $\frac{d}{dx} x^{-1} = (-1)x^{-1-1} = -\frac{1}{x^{-2}}$
The process of finding the derivative is called differentiation. Let $f$ be defined on an open interval $I \subseteq$ containing the point $x_0$, and suppose that $\lim _{\Delta x \rightarrow 0} \frac{f\left(x_0+\Delta x\right)-f\left(x_0\right)}{\Delta x}$ exists. Then $f$ is said to be differentiable at $x_0$ and the derivative of $f$ at $x_0$, denoted by $f^{\prime}\left(x_0\right)$, is given by
$
f^{\prime}\left(x_0\right)=\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{f\left(x_0+\Delta x\right)-f\left(x_0\right)}{\Delta x}
$
The differentiation of tan inverse x is $\frac{d}{d x}\left(\tan ^{-1} x\right)=\frac{1}{1+x^2}$
The differentiation of tan x is $\frac{d}{d x}(\tan (\mathbf{x}))=\sec ^2(\mathbf{x})$
22 Mar'25 01:25 AM
22 Mar'25 01:19 AM
14 Feb'25 07:09 PM
14 Feb'25 06:59 PM
14 Feb'25 06:54 PM
14 Feb'25 06:51 PM
14 Feb'25 06:49 PM
02 Feb'25 09:04 PM
02 Feb'25 09:00 PM
02 Feb'25 08:54 PM