Hermitian and skew Hermitian matrices are fundamental concepts in linear algebra, especially in the study of complex matrices. A Hermitian matrix is a complex square matrix that is equal to its own conjugate transpose, and its key property is that the diagonal elements of a Hermitian matrix are always real. In contrast, a skew Hermitian matrix is one that is equal to the negative of its conjugate transpose, and its diagonal entries are purely imaginary or zero. These types of matrices frequently arise in quantum mechanics, signal processing, and other applied mathematics domains. If you're looking for a clear Hermitian matrix example or wish to understand the distinction between Hermitian and skew Hermitian matrix properties, this article will help. In this article, we explore definitions, properties, and examples of Hermitian and skew Hermitian matrices.
This Story also Contains
A Hermitian matrix is a complex square matrix that is equal to its own conjugate transpose. These matrices are widely used in linear algebra, quantum mechanics, and complex analysis. A key property is that the diagonal elements of a Hermitian matrix are always real. This section explains the definition, properties, and provides a Hermitian matrix example with detailed verification.
A matrix $A = [a_{ij}]$ is called a Hermitian matrix if:
$A = A^H$
where $A^H$ denotes the conjugate transpose of $A$. This condition means that:
$a_{ij} = \overline{a_{ji}}$
for all $i$ and $j$, where $\overline{a_{ji}}$ is the complex conjugate of the element at position $(j, i)$.
A Hermitian matrix is always a square matrix, i.e., it has the same number of rows and columns.
The diagonal elements of a Hermitian matrix are always real, i.e., $a_{ii} \in \mathbb{R}$.
Off-diagonal elements satisfy $a_{ij} = \overline{a_{ji}}$.
All eigenvalues of a Hermitian matrix are real.
Hermitian matrices are diagonalizable by a unitary matrix.
Hermitian matrices play a key role in representing real-valued observables in physics.
The condition $a_{ii} = \overline{a_{ii}}$ must hold for all diagonal elements. This is only possible if $a_{ii}$ is a real number. Therefore:
$\text{If } A \text{ is Hermitian, then } a_{ii} \in \mathbb{R}$
This is one of the most recognisable properties of Hermitian matrices.
Consider the matrix:
$A = \begin{bmatrix} 4 & 2 + i \\ 2 - i & 5 \end{bmatrix}$
Step 1: Find the transpose of $A$:
$A^T = \begin{bmatrix} 4 & 2 - i \\ 2 + i & 5 \end{bmatrix}$
Step 2: Take the complex conjugate of $A^T$ to get the conjugate transpose $A^H$:
$A^H = \begin{bmatrix} 4 & 2 - i \\ 2 + i & 5 \end{bmatrix}$
Step 3: Compare $A$ and $A^H$:
$A = A^H$
Therefore, $A$ is a Hermitian matrix.
We know that when we take the transpose of a matrix, its diagonal elements remain the same, and while taking conjugate we just change the sign from +ve to -ve and -ve to +ve for the imaginary part of all elements, So to satisfy the condition A' = A diagonal elements must not change, implies all diagonal element must be purely real,
e.g. Let, $A=\left[\begin{array}{ccc}3 & 3-4 i & 5+2 i \\ 3+4 i & 5 & -2+i \\ 5-2 i & -2-i & 7\end{array}\right]$
Then,
$
\begin{gathered}
\mathrm{A}^{\prime}=\left[\begin{array}{ccc}
3 & 3+4 i & 5-2 i \\
3-4 i & 5 & -2-i \\
5+2 i & -2+i & 7
\end{array}\right] \\
\therefore \mathrm{A}^H=\overline{\left(\mathrm{A}^{\prime}\right)}=\left[\begin{array}{ccc}
3 & 3-4 i & 5+2 i \\
3+4 i & 5 & -2+i \\
5-2 i & -2-i & 7
\end{array}\right]
\end{gathered}
$
here, A is Hermitian matrix as $\mathrm{A}=\mathrm{A}^H$
A skew Hermitian matrix is a complex square matrix that satisfies a specific symmetry: it is equal to the negative of its conjugate transpose. These matrices are significant in advanced algebra, especially in fields like quantum mechanics and electrical engineering. A defining feature is that the diagonal elements of a skew Hermitian matrix are always purely imaginary or zero.
A matrix $A$ is called a skew Hermitian matrix if:
$A = -A^H$
where $A^H$ is the conjugate transpose of $A$. This means that each element satisfies:
$a_{ij} = -\overline{a_{ji}}$
for all $i$ and $j$, where $\overline{a_{ji}}$ denotes the complex conjugate of the element in the $j^{\text{th}}$ row and $i^{\text{th}}$ column.
$A$ is always a square matrix.
Diagonal elements satisfy: $a_{ii} = -\overline{a_{ii}} \Rightarrow a_{ii} \in \mathbb{C} \text{ such that } \text{Re}(a_{ii}) = 0$
So, each diagonal element is purely imaginary or zero.
Off-diagonal elements satisfy: $a_{ij} = -\overline{a_{ji}}$
All eigenvalues of a skew Hermitian matrix are either purely imaginary or zero.
If $A$ is skew Hermitian, then the matrix $iA$ is Hermitian, where $i = \sqrt{-1}$.
For diagonal elements $a_{ii}$ in a skew Hermitian matrix:
$a_{ii} = -\overline{a_{ii}}$
This implies:
$a_{ii} + \overline{a_{ii}} = 0 \Rightarrow 2\text{Re}(a_{ii}) = 0$
Therefore, the real part of $a_{ii}$ must be zero, meaning:
$a_{ii} \in \{ bi \mid b \in \mathbb{R} \}$
So, diagonal elements are always purely imaginary or zero.
Let us check whether the following matrix is skew Hermitian:
$A = \begin{bmatrix} 0 & 2+i \\ -2+i & 0 \end{bmatrix}$
Step 1: Transpose $A$:
$A^T = \begin{bmatrix} 0 & -2+i \\ 2+i & 0 \end{bmatrix}$
Step 2: Take complex conjugate:
$A^H = \begin{bmatrix} 0 & -2-i \\ 2-i & 0 \end{bmatrix}$
Step 3: Find $-A^H$:
$A^H = \begin{bmatrix} 0 & 2+i \\ -2+i & 0 \end{bmatrix}$
Since:
$A = -A^H$
The matrix is skew-Hermitian.
We know that when we take the transpose of a matrix, its diagonal elements remain the same, and while taking conjugate we just change the sign from +ve to -ve OR -ve to +ve in the imaginary part of all elements, So to satisfy the condition A? = - A, all diagonal element must be purely imaginary. As A' = - A so
$\begin{aligned} & \mathrm{a}_{\mathrm{ij}}=-\overline{\mathrm{a}_{\mathrm{ij}}} \forall \mathrm{i}, \mathrm{j} \\ & \text { if we put } \mathrm{i}=\mathrm{j} \text {, we have } \\ & \mathrm{a}_{\mathrm{ii}}=-\overline{\mathrm{a}_{\mathrm{ii}}} \Rightarrow \mathrm{a}_{\mathrm{ii}}+\overline{\mathrm{a}_{\mathrm{ii}}}=0 \\ & \Rightarrow \mathrm{a}_{\mathrm{ii}}=0\end{aligned}$
Hence all diagonal elements should be purely imaginary
e.g. Let, $\mathrm{A}=\left[\begin{array}{ccc}-3 i & -3-4 i & -5+2 i \\ 3-4 i & 5 i & i \\ 5+2 i & i & 0\end{array}\right]$
Then,
$
\begin{aligned}
\mathrm{A}^{\prime} & =\left[\begin{array}{ccc}
-3 i & 3-4 i & 5+2 i \\
-3-4 i & 5 i & i \\
-5+2 i & i & 0
\end{array}\right] \\
\therefore \mathrm{A}^\theta & =\overline{\left(\mathrm{A}^{\prime}\right)}=\left[\begin{array}{ccc}
3 i & 3+4 i & 5-2 i \\
-3+4 i & -5 i & -i \\
-5-2 i & -i & 0
\end{array}\right] \\
\quad & =-\left[\begin{array}{ccc}
-3 i & -3-4 i & -5+2 i \\
3-4 i & 5 i & i \\
5+2 i & i & 0
\end{array}\right]=-\mathrm{A}
\end{aligned}
$
Here, $A$ is Skew-Hermitian matrix as $A^\theta=-A$
1. For any square matrix $A$ with complex elements, the matrix $A - A^H$ is always a skew Hermitian matrix.
Proof:
Let us compute the conjugate transpose of $ A-A^H$:
$(A - A^H)^H = A^H - (A^H)^H = A^H - A = -(A - A^H)$
Hence, $A - A^H$ is skew Hermitian because:
$(A - A^H)^H = -(A - A^H)$
2. Every square matrix can be expressed as the sum of a Hermitian and a skew Hermitian matrix.
That is, if $A$ is any square matrix, then:
$A = \frac{1}{2}(A + A^H) + \frac{1}{2}(A - A^H)$
Here,
$\frac{1}{2}(A + A^H)$ is a Hermitian matrix
$\frac{1}{2}(A - A^H)$ is a skew Hermitian matrix
Thus, any complex square matrix can be decomposed into a Hermitian part and a skew Hermitian part.
Understand the logical foundations behind key properties of Hermitian and Skew-Hermitian matrices. This section includes step-by-step proofs using transpose and conjugate rules, helping reinforce conceptual clarity.
Proof:
We check the conjugate transpose of $A A^H$:
$(A A^H)^H = (A^H)^H A^H = A A^H$
Therefore, $A A^H$ is Hermitian. Similarly,
$(A^H A)^H = (A)^H (A^H)^H = A^H A$
Hence, $A^H A$ is also Hermitian.
Proof:
We need to show that:
$(i A)^H = -i A$
Now,
$(i A)^H = A^H \cdot \overline{i} = A \cdot (-i) = -i A$
Since $A$ is Hermitian, $A^H = A$. Hence, $ iA$ is skew Hermitian.
Proof:
We need to show that:
$(i A)^H = i A$
Now, $(i A)^H = A^H \cdot \overline{i} = (-A) \cdot (-i) = i A$
Since $A$ is skew Hermitian, $A^H = -A$. Hence, $i A$ is Hermitian.
Explanation:
If $A^H = A$ and $B^H = B$, then:
$(c A)^H = \overline{c} A^H = c A$
since $c$ is real, $\overline{c} = c$. Hence, $c A$ is Hermitian. Similarly, $d B$ is Hermitian.
Therefore,
$(c A + d B)^H = (c A)^H + (d B)^H = c A + d B$
So, $c A + d B$ is Hermitian.
Proof:
Check:
$(A B)^H = B^H A^H = B A = A B$
Since $A$ and $B$ are Hermitian ($A^H = A$, $B^H = B$), and $A B = B A$, the product $A B$ is Hermitian.
Explanation:
From part (b), if $A B = B A$, then both $A B$ and $B A$ are Hermitian. Their sum is:
$(A B + B A)^H = (A B)^H + (B A)^H = A B + B A$
Hence, $A B + B A$ is Hermitian.
Proof:
We compute:
$(A B - B A)^H = (A B)^H - (B A)^H = B^H A^H - A^H B^H = B A - A B = - (A B - B A)$
Therefore, $A B - B A$ is skew Hermitian.
Proof:
Since $A^H = -A$ and $B^H = -B$, we have:
$(c A + d B)^H = \overline{c} A^H + \overline{d} B^H = c (-A) + d (-B) = - (c A + d B)$
Hence, $ cA + dB$ is skew Hermitian.
Property | Hermitian Matrix | Skew Hermitian Matrix |
Definition | $A = A^H$ | $A = -A^H$ |
Diagonal Elements | Real: $a_{ii} = \overline{a_{ii}}$ | Purely imaginary or zero: $a_{ii} = -\overline{a_{ii}}$ |
Off-Diagonal Elements | $a_{ij} = \overline{a_{ji}}$ | $a_{ij} = -\overline{a_{ji}}$ |
Example | $\begin{bmatrix} 3 & 2+i \\ 2-i & 5 \end{bmatrix}$ | $\begin{bmatrix} 0 & 2+i \\ -2+i & 0 \end{bmatrix}$ |
Conjugate Transpose Condition | Equal to original: $A^H = A$ | Negative of original: $A^H = -A$ |
Sum with its Conjugate Transpose | $\dfrac{1}{2}(A + A^H)$ is Hermitian | $\dfrac{1}{2}(A - A^H)$ is Skew Hermitian |
Scalar Multiplication Rule | $iA$ is Skew Hermitian if $A$ is Hermitian | $iA$ is Hermitian if $A$ is Skew Hermitian |
Example 1: If $A$ is Hermitian such that $A^2=0$, Then
1) $A=I$
2) $\mathrm{A}=0$
3) $A^3=A$
4) none of these
Solution: Hermitian matrices –
$A^\theta = A \ \text{where } A^\theta \ \text{is the complex conjugate transpose of } A$
$A = \left[\begin{array}{cc} a & b+ic \\ b-ic & d \end{array}\right]$
$B = \left[\begin{array}{ccc} 3 & 3-4i & 5+2i \\ 3+4i & 5 & -2+i \\ 5-2i & -2-i & 2 \end{array}\right]$
$\mathrm{A} = \left[\begin{array}{cccc} a_{11} & a_{12} & \ldots & a_{1n} \\ a_{21} & a_{22} & \ldots & a_{2n} \\ \ldots & \ldots & \ldots & \ldots \\ a_{n1} & a_{n2} & \ldots & a_{nn} \end{array}\right]$
$= \left[\begin{array}{cccc} \bar{a}_{11} & \bar{a}_{21} & \ldots & \bar{a}_{n1} \\ \bar{a}_{12} & \bar{a}_{22} & \ldots & \bar{a}_{n2} \\ \ldots & \ldots & \ldots & \ldots \\ \bar{a}_{1n} & \bar{a}_{2n} & \ldots & \bar{a}_{nn} \end{array}\right]$
Since $\mathrm{A}^2=0$, each element of $A A^\theta$ is zero.
$\Rightarrow \mathrm{a}_{\mathrm{i} 1} \bar{a}_{i 1}+\mathrm{a}_{\mathrm{i} 2} \bar{a}_{i 2^{+}} \ldots \ldots+\mathrm{a}_{\mathrm{in}} \bar{a}_{i n}=\left|\mathrm{a}_{\mathrm{i} 1}\right|^2+\left|\mathrm{a}_{\mathrm{i} 2}\right|^2+\ldots .+\left|\mathrm{a}_{\mathrm{in}}\right|^2=0$
$\left|a_{i 1}\right|=\left|a_{i 2}\right|=\ldots .=\left|a_{i n}\right|=0 \Rightarrow a_{i 1}=a_{i 2}=\ldots .=a_{i n}=0 \text {. Hence } A=0 \text {. }$
Hence, the correct answer is option 2.
1) $A^\theta=\left[\begin{array}{ccc}3 i & -2 i & 5-3 i \\ 4+2 i & 4 & 4+5 i \\ 5+3 i & 4-5 i & 5 i\end{array}\right]$
2) $A^\theta=\left[\begin{array}{ccc}3 & 4-2 i & 5+3 i \\ 4+2 i & 4 & 4+5 i \\ 5-3 i & 4-5 i & 5\end{array}\right]$
3) $A^\theta=\left[\begin{array}{ccc}3 & 4-2 i & 5+3 i \\ 4+2 i & 4 & 4-5 i \\ 5-3 i & 4+5 i & 5\end{array}\right]$
4) $A^\theta=\left[\begin{array}{ccc}3 & 4-2 i & 5-3 i \\ 4+2 i & 4 & 4+5 i \\ 5+3 i & 4-5 i & 5\end{array}\right]$
Solution: For the matrix to be Hermitian, $A^\theta=A$
So we find $A^\theta$ and verify that it is equal to A or not
To find $A^\theta$, we first take the transpose of A and then its conjugate
So, taking the transpose of A, we have
$
A^{\prime}=\left[\begin{array}{ccc}
3 & 4+2 i & 5-3 i \\
4-2 i & 4 & 4-5 i \\
5+3 i & 4+5 i & 5
\end{array}\right]
$
Taking its conjugate now
$
\overline{\mathrm{A}^{\prime}}=\mathrm{A}^\theta=\left[\begin{array}{ccc}
3 & 4-2 i & 5+3 i \\
4+2 i & 4 & 4+5 i \\
5-3 i & 4-5 i & 5
\end{array}\right]=\mathrm{A}
$
Hence, the answer is option 2.
1) $\left[\begin{array}{ccc}-i & -1+i & -2 \\ 1+i & -3 i & -i \\ 2 & -i & 0\end{array}\right]$
2) $\left[\begin{array}{ccc}i & 1-i & 2 \\ -1-i & 3 i & i \\ -2 & i & 0\end{array}\right]$
3) $\left[\begin{array}{ccc}i & -1+i & -2 \\ 1+i & 3 i & -i \\ 2 & -i & 0\end{array}\right]$
4) $\left[\begin{array}{ccc}-i & -1+i & 2 \\ 1+i & 3 i & -i \\ -2 & -i & 0\end{array}\right]$
Solution: First, we take the transpose and then it's conjugate and equate it to -A.
$
\mathrm{A}^{\prime}=\left[\begin{array}{ccc}
i & -1-i & -2 \\
1-i & 3 i & i \\
2 & i & 0
\end{array}\right]
$
now taking conjugate of the transpose
$
\overline{\mathrm{A}^{\prime}}=\left[\begin{array}{ccc}
-i & -1+i & -2 \\
1+i & -3 i & -i \\
2 & -i & 0
\end{array}\right]=-\mathrm{A}
$
Hence, the answer is the option 1.
Example 4: If $A=\left[\begin{array}{cc}2+i & 3 i \\ -3 i & x\end{array}\right]$ is a skew-Hermitian matrix, then find the value of x :
1) $2-\mathrm{i}$
2) $2+\mathrm{i}$
3) 0
4) All of these
Solution: we know that Skew hermitian matrices - $A^{\theta}=-A$
$A^{\theta}=-A$ is a complex conjugate transpose matrix of matrix $A$
since there is only restriction on the elements such as $a_{12}$ and $a_{21}$ not $a_{11}$ and $a_{22}$.
Hence, the answer is the option 4.
Example 5: Which of the following statements is true?
1) If $A$ is a hermitian matrix then, $i A$ is a skew hermitian matrix, where $i=\sqrt{-1}$
2) If $A$ is a skew-hermitian matrix then $i A$ is a hermitian matrix, where $i=\sqrt{-1}$
3) If $A$ and $B$ are hermitian matrices of the same order, then $A B-B A$ will be skew-hermitian.
4) All of the above
Solution: Let A be a matrix of order $2 \times 2$
$
A=\left[\begin{array}{cc}
a & b+i c \\
b-i c & d
\end{array}\right]
$
then $i A=\left[\begin{array}{cc}a i & b i-c \\ b i+c & d i\end{array}\right]=\left[\begin{array}{cc}a i & -c+b i \\ c+b i & d i\end{array}\right]$ which is a skew hermitian matrix.
$
\begin{aligned}
& \text{now,} \space i A=\left[\begin{array}{cc}
a i & b i-c \\
b i+c & d i
\end{array}\right]=\left[\begin{array}{cc}
a i & -c+b i \\
c+b i & d i
\end{array}\right] \\
& i^2 A=\left[\begin{array}{cc}
a i^2 & b i^2-c i \\
b i^2+c i & d i^2
\end{array}\right]=\left[\begin{array}{cc}
-a & -b-c i \\
-b+c i & -d
\end{array}\right]=-A \quad \text { which is a hermitian matrix.}
\end{aligned}
$
Thus, options 1 and 2 are true.
Let $A$ and $B$ be a hermitian matrix of order $2 \times 2$
$
A=\left[\begin{array}{cc}
a & i c \\
-i c & d
\end{array}\right] \quad B=\left[\begin{array}{cc}
e & i g \\
-i g & h
\end{array}\right]
$
Now taking transpose
$
A^{\prime}=\left[\begin{array}{cc}
a & -i c \\
i c & d
\end{array}\right] \quad B^{\prime}=\left[\begin{array}{cc}
e & -i g \\
i g & h
\end{array}\right]
$
Now taking conjugate
$
\begin{aligned}
& A^\theta=\left[\begin{array}{cc}
a & i c \\
-i c & d
\end{array}\right] \quad B^\theta=\left[\begin{array}{cc}
e & i g \\
-i g & h
\end{array}\right] \\
& A \cdot B=\left[\begin{array}{cc}
a & i c \\
-i c & d
\end{array}\right] \cdot\left[\begin{array}{cc}
e & i g \\
-i g & h
\end{array}\right] \\
& A \cdot B=\left[\begin{array}{cc}
a e+c g & i a g+i c h \\
-i e c-i d g & g c+d h
\end{array}\right] \\
& A \cdot B=\left[\begin{array}{cc}
a e+c g & i(a g+c h) \\
-i(e c+d g) & g c+d h
\end{array}\right] \\
& B \cdot A=\left[\begin{array}{cc}
e & i g \\
-i g & h
\end{array}\right] \cdot\left[\begin{array}{cc}
a & i c \\
-i c & d
\end{array}\right] \\
& B \cdot A=\left[\begin{array}{cc}
a e+g c & i e c+i g d \\
-i a g-i h c & c g+d h
\end{array}\right]
\end{aligned}
$
$
A \cdot B-B \cdot A=\left[\begin{array}{cc}
0 & i(a g+c h+e c+g d) \\
-i(e c+d g+a g+h c) & 0
\end{array}\right] \space {\text {this matrix is a skew hermitian matrix}}
$
Therefore, statement (3) is also correct
Hence, the answer is option 4.
Explore essential matrix concepts that complement your understanding of Hermitian and Skew Hermitian matrices. This list covers foundational definitions, operations, and matrix types, designed to build a solid base for advanced questions in Class 12 and entrance exams. Use the resources below to access notes, formulas, and solved examples for each key topic.
Explore essential NCERT resources for Class 12 Maths Chapter 3: Matrices, including detailed revision notes, fully solved NCERT textbook solutions, and exemplar problem sets. These materials help strengthen your conceptual clarity and boost exam preparation for Matrices.
Sharpen your grasp of Hermitian and Skew Hermitian matrices with targeted MCQs crafted to assess key properties, definitions, and conceptual applications. These practice questions serve as a strong foundation for mastering advanced matrix concepts and are ideal for board exam prep and entrance tests.
Hermitian matrix MCQ - Practice Questions & Answers
Skew Hermitian Matrix MCQ - Practice Questions & Answers
You can practice the questions based on the next topics of matrices:
Frequently Asked Questions (FAQs)
The trace of a Hermitian matrix is the sum of its diagonal elements. Key properties include:
For a non-singular Hermitian matrix A:
To construct a Hermitian matrix H from any square matrix A:
Hermitian and Skew-Hermitian matrices are complementary:
Under similarity transformations, Hermitian matrices exhibit the following properties:
Hermitian matrices are the finite-dimensional representations of self-adjoint operators:
To calculate the exponential of a Hermitian matrix A:
Positive definite Hermitian matrices have several important properties and applications:
To prove that the eigenvalues of a Hermitian matrix A are real:
Hermitian matrices are crucial in describing energy-conserving physical systems: