Indefinite Integral Formulas

Indefinite Integral Formulas

Komal MiglaniUpdated on 02 Jul 2025, 08:08 PM IST

Integration of indefinite integral is one of the important parts of Calculus, which applies to measuring the change in the function at a certain point. Mathematically, it forms a powerful tool by which slopes of functions are determined, the maximum and minimum of functions found, and problems on motion, growth, and decay, to name a few. These concepts of integration have been broadly applied in branches of mathematics, physics, engineering, economics, and biology.

Indefinite Integral Formulas
Indefinite Integral Formulas

In this article, we will cover the concept of Integration of indefinite integral. This concept falls under the broader category of Calculus, which is a crucial Chapter in class 12 Mathematics. It is not only essential for board exams but also for competitive exams like the Joint Entrance Examination (JEE Main), and other entrance exams such as SRMJEE, BITSAT, WBJEE, BCECE, and more. Over the last ten years of the JEE Main exam (from 2013 to 2023), a total of two questions have been asked on this concept, including one in 2014, one in 2018, and one in 2021.

Integration of Indefinite Integral:

Integration is the reverse process of differentiation. In integration, we find the function whose differential coefficient is given. The rate of change of a quantity $y$ concerning another quantity $x$ is called the derivative or differential coefficient of $y$ concerning $x$. Geometrically, the Differentiation of a function at a point represents the slope of the tangent to the graph of the function at that point.

An intergral for which the limits are not defined is called the indefinite integral. An indefinite integral, denoted as $\int f(x) d x$. It is expressed as $\int f(x) d x=F(x)+C$. where $\mathrm{F}(\mathrm{x})$ is any antiderivative of $\mathrm{f}(\mathrm{x})$ and C is the constant of integration.

Fundamental Formulae (Inverse Trigonometric Functions)
1. $\frac{d}{d x}\left(\sin ^{-1} \frac{x}{a}\right)=\frac{1}{\sqrt{a^2-x^2}} \Rightarrow \int \frac{d x}{\sqrt{a^2-x^2}}=\sin ^{-1}\left(\frac{x}{a}\right)+C$
2. $\frac{d}{d x}\left(\cos ^{-1} \frac{x}{a}\right)=\frac{-1}{\sqrt{a^2-x^2}} \Rightarrow \int \frac{-1}{\sqrt{a^2-x^2}} d x=\cos ^{-1}\left(\frac{x}{a}\right)+C$
3. $\frac{d}{d x}\left(\frac{1}{a} \tan ^{-1} \frac{x}{a}\right)=\frac{1}{a^2+x^2} \Rightarrow \int \frac{d x}{a^2+x^2}=\frac{1}{a} \tan ^{-1}\left(\frac{x}{a}\right)+C$
4. $\frac{d}{d x}\left(\frac{1}{a} \cot ^{-1} \frac{x}{a}\right)=\frac{-1}{a^2+x^2} \Rightarrow \int \frac{-1}{a^2+x^2} d x=\frac{1}{a} \cot ^{-1}\left(\frac{x}{a}\right)+C$
5. $\frac{d}{d x}\left(\frac{1}{a} \sec ^{-1} \frac{x}{a}\right)=\frac{1}{x \sqrt{x^2-a^2}} \Rightarrow \int \frac{d x}{x \sqrt{x^2-a^2}}=\frac{1}{a} \sec ^{-1}\left(\frac{x}{a}\right)+C$
6. $\frac{d}{d x}\left(\frac{1}{a} \csc ^{-1} \frac{x}{a}\right)=\frac{-1}{x \sqrt{x^2-a^2}} \Rightarrow \int \frac{-d x}{x \sqrt{x^2-a^2}}=\frac{1}{a} \csc ^{-1}\left(\frac{x}{a}\right)+C$

Basic integration rules,
(i) $\frac{d}{d x}\left(\frac{x^{n+1}}{n+1}\right)=x^n$;
$\int x^n d x=\frac{x^{n+1}}{n+1}+$ C, $n \neq-1$

Particularly, we note that
$\frac{d}{d x}(x)=1$;
$\int d x=x+C$

(ii) $\frac{d}{d x}(\sin x)=\cos x$;
$\int \cos x d x=\sin x+C$

(iii) $\frac{d}{d x}(-\cos x)-\sin x$;
$\int \sin x d x=-\cos x+\mathrm{C}$

(iv) $\frac{d}{d x}(\tan x)-\sec ^2 x$;
$\int \sec ^2 x d x=\tan x+C$

(v) $\frac{d}{d x}(-\cot x)=\operatorname{cosec}^2 x$;
$\int \operatorname{cosec}^2 x d x=-\cot x+C$

(vi) $\frac{d}{d x}(\sec x)=\sec x \tan x$;
$\int \sec x \tan x d x=\sec x+C$

(vii) $\frac{d}{d x}(-\operatorname{cosec} x)=\operatorname{cosec} x \cot x$;
$\int \operatorname{cosec} x \cot x d x=-\operatorname{cosec} x+4$

(viii) $\frac{d}{d x}\left(\sin ^{-1} x\right)-\frac{1}{\sqrt{1-x^2}}$;
$\int \frac{d x}{\sqrt{1-x^2}}=\sin ^{-1} x+C$

(ix) $\frac{d}{d x}\left(-\cos ^{-1} x\right)=\frac{1}{\sqrt{1-x^2}}$;
$\int \frac{d x}{\sqrt{1-x^2}}=-\cos ^{-1} x+C$

(x) $\frac{d}{d x}\left(\tan ^{-1} x\right)=\frac{1}{1+x^2}$;
$\int \frac{d x}{1+x^2}=\tan ^{-1} x+C$

(xi) $\frac{d}{d x}\left(-\cot ^{-1} x\right)=\frac{1}{1+x^2} ; \quad \int \frac{d x}{1+x^2}=-\cot ^{-1} x+\mathrm{C}$

Recommended Videos Based on Indefinite Integral


Solved Examples based on Indefinite Integral

Example 1: If $\int \frac{2 x+5}{\sqrt{7-6 x-x^2}} d x=A \sqrt{7-6 x-x^2}+B \sin ^{-1}\left(\frac{x+3}{4}\right)+C$ (where C is a constant of integration), then the ordered pair ( A , B ) is equal to :
1) $(2,1)$
2) $(-2,-1)$
3) $(-2,1)$
4) $(2,-1)$

Solution
Integration by perfect square method -

$a x^2+b x+c=a\left[x^2+\frac{b x}{a}+\frac{c}{a}\right]=a\left[\left(x+\frac{b}{2 a}\right)^2+\frac{c}{a}-\frac{b^2}{4 a^2}\right]$

Make the coefficient of $x^2$ +ve one .

and

$\begin{aligned}
& I=\int \frac{2 x+5}{\sqrt{7-6 x-x^2}} d x \\
& =-\int \frac{(-2 x-5)}{\sqrt{7-6 x-x^2}} d x \\
& =-\int \frac{-6-2 x-5+6}{\sqrt{7-6 x-x^2}} d x \\
& =\int\left(-\frac{-2 x-6}{\sqrt{-x^2-6 x+7}}-\frac{1}{\sqrt{-x^2-6 x+7}}\right) \mathrm{d} x \\
& =-2 \sqrt{-x^2-6 x+7}-\int \frac{1}{\sqrt{16-(x+3)^2}} \mathrm{~d} x \\
& =-2 \sqrt{7-6 x-x^2}-\sin ^{-1}\left(\frac{x+3}{4}\right)+C \\
& \mathrm{~A}=-2 ; \mathrm{B}=-1
\end{aligned}$


Hence, the answer is the option 2.

Example 2: If $I_1=\int \frac{d x}{\sqrt{a^2-x^2}}$ and $I_2=\int \cos ^{-1} \frac{x}{a}$ then $I_1+I_2=$ ?

1) $\sin ^{-1} \frac{x}{a}+c$

2) $\cos ^{-1} \frac{x}{a}+c$

3) Constant value

4) None of these

Solution

As we have learnt,

Integrals of inverse circular functions -

$\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{d} x}\left(\sin ^{-1} \frac{x}{a}\right)=\frac{1}{\sqrt{a^2-x^2}} \\
& \therefore \int \frac{d x}{\sqrt{a^2-x^2}}=\sin ^{-1} \frac{x}{a}+c \\
& I_1=\int \frac{d x}{\sqrt{a^2-x^2}}=\sin ^{-1} \frac{x}{a}+c
\end{aligned}$

Also,

$I_1+I_2=\sin ^{-1} \frac{x}{a}+\cos ^{-1} \frac{x}{a}+c=\frac{\pi}{2}+c=C$

Hence, the answer is the option 3.

Example 3: If the value of the integral $\int_0^{\frac{1}{2}} \xrightarrow[\left(1-x^2\right)^{\frac{3}{2}}]{x^2} d x$ is $\frac{k}{6}$ then $k$ is equal to?
1) $2 \sqrt{3}-\pi$
2) $2 \sqrt{3}+\pi$
3) $3 \sqrt{2}+\pi$
4) $3 \sqrt{2}-\pi$

Solution

$\begin{aligned}
& \int_0^{1 / 2} \frac{\left(\left(x^2-1\right)+1\right)}{\left(1-x^2\right)^{3 / 2}} d x \\
& \int_0^{1 / 2} \frac{d x}{\left(1-x^2\right)^{3 / 2}}-\int_0^{1 / 2} \frac{d x}{\sqrt{1-x^2}} \\
& \int_0^{1 / 2} \frac{x^{-3}}{\left(x^{-2}-1\right)^{3 / 2}} d x-\left(\sin ^{-1} x\right)_0^{1 / 2}
\end{aligned}$


Let $x^{-2}-1=t^2 \Rightarrow x^{-3} d x=-t d t$

$\begin{aligned}
& \int_{\infty}^{\sqrt{3}} \frac{-t d t}{t^3}-\frac{\pi}{6}=\int_{\sqrt{3}}^{\infty} \frac{d t}{t^2}-\frac{\pi}{6}=\frac{1}{\sqrt{3}}-\frac{\pi}{6}=\frac{k}{6} \\
& k=2 \sqrt{3}-\pi
\end{aligned}$
Hence, the answer is the option 1 .

Example 4: Let $\mathrm{y}=\mathrm{y}(\mathrm{x})$ be the solution of the differential equation $x d y-y d x=\sqrt{\left(x^2+y^2\right)} d x, x \geqslant 1$, with $\mathrm{y}(1)=0$. If the area bounded by the line $\mathrm{x}=1, x=e^\pi, y=0$ and $\mathrm{y}=\mathrm{y}(\mathrm{x})$ is $\alpha e^{2 \pi}+\beta$, then the va;ue of $10(\alpha+\beta)$ is equal to $\qquad$
1) $2$
2) $4$
3) $6$
4) $8$

Solution

$\begin{aligned}
& x d y-y d x=\sqrt{x^2-y^2} d x \\
& \Rightarrow \int \frac{x d y-y d x}{x^2}=\frac{1}{x} \sqrt{1-\frac{y^2}{x^2}} d x \\
& \Rightarrow \int \frac{d\left(\frac{y}{x}\right)}{\sqrt{1-\left(\frac{y}{x}\right)^2}}=\int \frac{d x}{x} \\
& \Rightarrow \sin ^{-1}\left(\frac{y}{x}\right)=\ln |x|+c \\
& \text { at } x=1, y=0 \Rightarrow c=0 \\
& y=x \sin (\ln x)
\end{aligned}$

$\begin{aligned}& \mathrm{A}=\int_1^{\mathrm{e}^\pi} \mathrm{x} \sin (\ell \mathrm{nx}) \mathrm{dx} \\
& \mathrm{x}=\mathrm{e}^{\mathrm{t}}, \mathrm{dx}=\mathrm{e}^{\mathrm{t}} d \mathrm{dt} \\
& \Rightarrow \int_0^{\pi^2} \mathrm{e}^{2 \mathrm{t}} \sin (\mathrm{t}) \mathrm{dt}=\mathrm{A} \\
& \alpha \mathrm{e}^{2 \pi}+\beta=\left(\frac{\mathrm{e}^{2 t}}{5}(2 \sin \mathrm{t}-\cos \mathrm{t})\right)_0^\pi=\frac{1+\mathrm{e}^{2 \pi}}{5} \\
& \alpha=\frac{1}{5}, \beta=\frac{1}{5} \text { so } 10(\alpha+\beta)=4
\end{aligned}$
Hence, the answer is the option 2.

Example 5: Evaluate the integral of $\int \frac{1}{5 \sqrt{25-4 x^2}} d x$.
1) $\frac{1}{10} \sin ^{-1} \frac{2 x}{5}+C$
2) $-\frac{1}{4 x} \sec ^{-1} \frac{5}{2 x}+C$
3) $\frac{1}{5} \sec ^{-1} \frac{4 x}{5}+C$
4) $-\frac{1}{5} \sec ^{-1} \frac{4 x}{5}+C$

Solution

Given integral

$\int \frac{1}{5 \sqrt{25-4 x^2}} d x$

Substitute $x=\frac{5}{2} \sin \theta$ and $d x=\frac{5}{2} \cos \theta d \theta$.
$\theta=\sin ^{-1} \frac{2 x}{5}$
$\int \frac{1}{5 \sqrt{25-4 x^2}} d x=\int \frac{1}{5 \sqrt{25-\left(4 \times\left(\frac{5}{2} \sin \theta\right)^2\right)}} \frac{5}{2} \cos \theta d \theta$
$\int \frac{1}{\sqrt{25\left(1-\sin ^2 \theta\right)}} \frac{1}{2} \cos \theta d \theta=\frac{1}{2} \int \frac{1}{5 \cos \theta} \times \cos \theta d \theta$
$\frac{1}{10} \int d \theta=\frac{1}{10} \theta+C$
So, it becomes
$\frac{1}{10} \sin ^{-1} \frac{2 x}{5}+C$

Hence, the answer is option (1).

Summary

Indefinite integration is the most elementary process in calculus for seeking antiderivatives of functions. It reverses the process of differentiation, which finds a function whose derivative equals the original function plus an arbitrary constant. Basic rules of integration allow integration with polynomial functions, exponential functions, trigonometric functions, and so on.

Frequently Asked Questions (FAQs)

Q: How do we integrate functions involving inverse hyperbolic functions?
A:
Inverse hyperbolic functions (arsinh, arcosh, artanh) have specific integration rules, similar to inverse trigonometric functions. For example, ∫arsinh(x)dx = x arsinh(x) - √(x^2 + 1) + C. These functions appear in many physical and engineering applications, particularly those involving exponential growth or decay.
Q: What is the role of symmetry in evaluating certain indefinite integrals?
A:
Symmetry can simplify the integration process. For even functions (f(-x) = f(x)), the indefinite integral will be an odd function plus a constant. For odd functions (f(-x) = -f(x)), the indefinite integral will be an even function plus a constant. Recognizing these symmetries can guide our approach and help verify our results.
Q: How do we handle integrals involving rational functions of sine and cosine?
A:
Integrals involving rational functions of sine and cosine can often be simplified using the substitution u = tan(x/2). This substitution, known as the Weierstrass substitution, transforms trigonometric functions into algebraic ones, allowing us to use techniques for rational functions.
Q: How do we integrate functions involving the floor or ceiling function?
A:
Integrating functions with floor or ceiling functions typically involves breaking the integral into pieces at integer points. Within each interval, the floor or ceiling function is constant, allowing us to integrate. This process highlights the importance of understanding piecewise functions and discontinuities in integration.
Q: How do parametric equations relate to indefinite integrals?
A:
When dealing with parametric equations, we can find the area under a curve using the formula ∫y dx = ∫y(dt/dx)dt. This involves expressing both x and y in terms of a parameter t and then integrating. Understanding this connection helps in solving problems in physics and engineering where parametric representations are common.
Q: What is the role of complex integration in solving real-valued indefinite integrals?
A:
Complex integration techniques can sometimes simplify real-valued integrals, especially those involving trigonometric functions. For instance, integrals of rational functions of
Q: How do we handle integrals involving products of trigonometric and polynomial functions?
A:
Integrals involving products of trigonometric and polynomial functions often require a combination of techniques, such as integration by parts and trigonometric identities. For example, ∫x sin(x)dx can be solved using integration by parts. These types of integrals are common in physics, particularly in problems involving oscillations and waves.
Q: What is the significance of the method of undetermined coefficients in integration?
A:
The method of undetermined coefficients, while more commonly used in differential equations, can be applied to find antiderivatives of certain functions. It involves assuming a general form for the antiderivative and then determining the coefficients by differentiation and comparison. This method highlights the interconnectedness of differentiation and integration.
Q: What is the significance of integration by parts in solving recursive integrals?
A:
Integration by parts can be used to set up recursive relationships for certain types of integrals. For example, in evaluating ∫x^n e^x dx, we can use integration by parts repeatedly to express the integral in terms of simpler integrals of the same form. This technique is powerful for solving integrals that seem to resist direct integration.
Q: What is the relationship between indefinite integrals and area under curves?
A:
While indefinite integrals don't directly give the area under a curve (that's the role of definite integrals), they are crucial in finding areas. The Fundamental Theorem of Calculus shows that if F(x) is an antiderivative of f(x), then the area under f(x) from a to b is F(b) - F(a). This connection emphasizes the practical importance of mastering indefinite integration techniques.