Integration as an Inverse Process of Differentiation

Integration as an Inverse Process of Differentiation

Komal MiglaniUpdated on 02 Jul 2025, 08:06 PM IST

Integration is one of the important parts of Calculus, which applies to measuring the change in the function at a certain point. Mathematically, it forms a powerful tool by which slopes of functions are determined, the maximum and minimum of functions found, and problems on motion, growth, and decay, to name a few. These concepts of integration have been broadly applied in branches of mathematics, physics, engineering, economics, and biology.

This Story also Contains

  1. Integration
  2. Standard Integration Formulae
  3. Solved Examples Based On Integration
Integration as an Inverse Process of Differentiation
Integration as an Inverse Process of Differentiation

In this article, we will cover the concept of Integration. This concept falls under the broader category of Calculus, which is a crucial Chapter in class 12 Mathematics. It is not only essential for board exams but also for competitive exams like the Joint Entrance Examination (JEE Main), and other entrance exams such as SRMJEE, BITSAT, WBJEE, BCECE, and more. Over the last ten years of the JEE Main exam (from 2013 to 2023), a total of seventeen questions have been asked on this concept, including one in 2014, one in 2018, six in 2019, four in 2020, three in 2021, and two in 2023.

Integration

Integration is the reverse process of differentiation. In integration, we find the function whose differential coefficient is given. The rate of change of a quantity y concerning another quantity x is called the derivative or differential coefficient of y concerning x. Geometrically, the Differentiation of a function at a point represents the slope of the tangent to the graph of the function at that point.

Integral is based on a limiting procedure which approximates the area of a curvilinear region by breaking the region into thin vertical slabs.”

For example,

$\begin{aligned} & \frac{d}{d x}(\sin x)=\cos x \\ & \frac{d}{d x}\left(x^2\right)=2 x \\ & \frac{d}{d x}\left(e^x\right)=e^x\end{aligned}$

In the above example, the function $\cos (x)$ is the derivative of $\sin (x)$. We say that $\sin (x)$ is an antiderivative (or an integral) of $\cos (x)$. Similarly, $x^2$ and $e^x$ are the antiderivatives (or integrals) of $2 x$ and $\mathrm{e}^{\mathrm{x}}$ respectively.

Also note that the derivative of a constant (C) is zero. So we can write the above examples as:

$\begin{aligned}
& \frac{d}{d x}(\sin x+c)=\cos x \\
& \frac{d}{d x}\left(x^2+c\right)=2 x \\
& \frac{d}{d x}\left(e^x+c\right)=e^x
\end{aligned}$

Thus, the anti-derivatives (or integrals) of the above functions are not unique. There exist infinitely many anti-derivatives of each of these functions which can be obtained by selecting C arbitrarily from the set of real numbers.

For this reason, C is referred to as an arbitrary constant. C is the parameter by varying which one gets different anti-derivatives (or integrals) of the given function.

If the function $F(x)$ is an antiderivative of $f(x)$, then the expression $F(x)+C$ is the indefinite integral of the function $f(x)$ and is denoted by the symbol $\int f(x) d x$.

By definition,

$\int \mathrm{f}(\mathrm{x}) \mathrm{dx}=\mathrm{F}(\mathrm{x})+\mathrm{c}$, where $\mathrm{F}^{\prime}(\mathrm{x})=\mathrm{f}(\mathrm{x})$ and 'c' is constant.
Here,

$\int \mathrm{f}(\mathrm{x}) \mathrm{dx}=\mathrm{F}(\mathrm{x})+\mathrm{c}$, where $\mathrm{F}^{\prime}(\mathrm{x})=\mathrm{f}(\mathrm{x})$ and ' $\mathrm{e}^{\prime}$ is constant.

Here,

Symbols / Terms / PhrasesMeaning
$\int f(x) d x$Integral of $f$ with respect to $x$
$f(x)$ in $\int f(x) d x$Integrand
$x$ in $\int f(x) d x$Variable of integration
An integral of $f$A function $F$ such that $F^{\prime}(x)=f(x)$
JEE Main Highest Scoring Chapters & Topics
Focus on high-weightage topics with this eBook and prepare smarter. Gain accuracy, speed, and a better chance at scoring higher.
Download E-book

Here,

Rules of integration

f(x) and g(x) are functions with antiderivatives ∫ f(x) and ∫ g(x) dx. Then,

(a) $\int \mathrm{kf}(x) d x=k \int f(x) d x$ for any constant $k$.
(b) $\int(f(x)+g(x)) d x=\int f(x) d x+\int g(x) d x$
(c) $\int(f(x)-g(x)) d x=\int f(x) d x-\int g(x) d x$

Standard Integration Formulae

Since, $\frac{d}{d x}(F(x))=f(x) \Leftrightarrow \int f(x) d x=F(x)+c$

Based on this definition and various standard formulas (which we studied in Limit, Continuity, and Differentiability) we can obtain the following important integration formulae,

1. $\frac{\mathrm{d}}{\mathrm{dx}}(\mathrm{kx})=\mathrm{k} \Rightarrow \int \mathrm{kdx}=\mathrm{kx}+\mathrm{C}$, where k is a constant

2. $\frac{\mathrm{d}}{\mathrm{dx}}\left(\frac{\mathrm{x}^{\mathrm{n}+1}}{\mathrm{n}+1}\right)=\mathrm{x}^{\mathrm{n}}, \mathrm{n} \neq-1 \Rightarrow \int \mathrm{x}^{\mathrm{n}} \mathrm{dx}=\frac{\mathrm{x}^{\mathrm{n}+1}}{\mathrm{n}+1}+\mathrm{C}, \mathrm{n} \neq-1$

3. $\frac{\mathrm{d}}{\mathrm{dx}}(\log |\mathrm{x}|)=\frac{1}{\mathrm{x}} \Rightarrow \int \frac{1}{\mathrm{x}} \mathrm{dx}=\log |\mathrm{x}|+\mathrm{C}$, when $\mathrm{x} \neq 0$

4. $\frac{d}{d x}\left(e^x\right)=e^x \Rightarrow \int e^x d x=e^x+C$

5. $\frac{d}{d x}\left(\frac{a^x}{\log _e a}\right)=a^x, a>0, a \neq 1 \Rightarrow \int a^x d x=\frac{a^x}{\log _e a}+C$

Recommended Video Based on Integration

Solved Examples Based On Integration

Example 1: If a curve passes through the point $(1,-2)$ and has a slope of the tangent at any point $(x, y)$ on it as $\frac{x^2-2 y}{x}$, then the curve also passes through the point:
1) $(\sqrt{3}, 0)$
2) $(3,0)$
3) $(-1,2)$
4) $(-\sqrt{2}, 1)$

Solution
Equation of the tangent -
To find the equation of the tangent we need either one slope + one point or two points.

$
\therefore\left(y-y_0\right)=m\left(x_0-y_0\right)
$

or $\left(y-y_2\right)=\frac{y_2-y_1}{x_2-x_1}\left(x-x_2\right)$
where $\left(x_0, y_0\right)$ is the point on the curve

Geometrical interpretation of dy / dx -
$
\begin{aligned}
& \therefore \frac{d y}{d x}=\tan \theta \\
& \quad \frac{\mathrm{d} y}{\mathrm{~d} x}+\frac{2 y}{x}=x \\
& \text { If } e^{\int \frac{2}{x} d x}=e^{2 \ln x}=x^2 \\
& y\left(x^2\right)=\int x \cdot x^2 d x \\
& x^2 y=\frac{x^4}{4}+c \\
& \therefore y(1)=-2 \\
& \Rightarrow c=-\frac{9}{4}
\end{aligned}
$

$y=\frac{x^4-9}{4 x^2}$ which passes through $(\sqrt{3}, 0)$
Hence, the answer is the option (1).

Example 2: If the area (in sq. units) of the region $\left\{(x, y): y^2 \leq 4 x, x+y \leq 1, x \geq 0, y \geq 0\right\}$ is $a \sqrt{2}+b$, then $a-b$ is equal to :
1) $-\frac{2}{3}$
2) $\frac{10}{3}$
3) 6
4) $\frac{8}{3}$

Solution

Area between two curves -

If we have two functions intersection each other.First find the point of intersection. Then integrate to find area

$\int_o^a[f(x)-9(x)] d x$

- wherein

Indefinite integrals for Algebraic functions -
$\frac{\mathrm{d}}{\mathrm{d} x} \frac{\left(x^{\mathrm{n}+1}\right)}{n+1}=x^n \mathbb{m}^{\mathrm{j} 0} d x=\frac{x^{n+1}}{n+1}+c$

- wherein

Where $n \neq-1$

$\left\{(x, y): y^2 \leqslant 4 x ; x+y \leqslant 1, x \geqslant 0, y \geqslant 0\right\}$

$
\begin{aligned}
A & =\int_0^{3-2 \sqrt{2}} 2 \sqrt{x} d x+\frac{1}{2}(1-(3-2 \sqrt{2}))(1-(3-2 \sqrt{2})) \\
& =\frac{2\left[x^{\frac{3}{2}}\right]_0^{3-2 \sqrt{2}}}{\frac{3}{2}}+\frac{1}{2}(2 \sqrt{2}-2)(2 \sqrt{2}-2) \\
& =\frac{8 \sqrt{2}}{3}+\left(-\frac{10}{3}\right) \\
a & =\frac{8}{3}, b=\frac{-10}{3} \\
a & -b=\frac{8}{3}-\left(-\frac{10}{3}\right)=\frac{18}{3}=6
\end{aligned}
$

Example 3: The area (in sq. units) of the region $A=\left\{(x, y): x^2 \leq y \leq x+2\right\}$ is:
1) $\frac{10}{3}$
2) $\frac{9}{2}$
3) $\frac{31}{6}$
4) $\frac{13}{6}$

Solution

Area between two curves -

If we have two functions intersection each other.First find the point of intersection. Then integrate to find area
$
\int_a^b[f(x)-g(x)] d x
$

Here,
Point of intersection of $x^2=y$ and $y=x+2$ are $(-1,1)$ and $(2,4)$

$y=x+2$

Required Area,

$
\begin{aligned}
& =\int_{-1}^2\left(x+2-x^2\right) d x \\
& =\left[\frac{x^2}{2}+2 x-\frac{x^3}{3}\right]_{-1}^2 \\
& =\frac{9}{2}
\end{aligned}
$

Example 4: If the area ( in sq. units) bounded by the parabola $y^2=4 \lambda x$ and the line $y=\lambda x, \lambda>0$, is $\frac{1}{9}$, then $\lambda$ is equal to:
1) $2 \sqrt{6}$
2) 48
3) 24
4) $4 \sqrt{3}$

Solution

Area between two curves -

If we have two functions intersection each other. First find the point of intersection. Then integrate to find area

$\int_0^a[f(x)-9(x)] d x$

- wherein

Indefinite integrals for Algebraic functions -

$\frac{\mathrm{d}}{\mathrm{d} x} \frac{\left(x^{\mathrm{n}+1}\right)}{n+1}=x^n \int_{\mathrm{s}} x^n d x=\frac{x^{n+1}}{n+1}+c$

-wherein
Where $n \neq-1$

the parabola $y^2=4 \lambda x$ and the line $y=\lambda x$
If $\lambda>0$, then

$\begin{aligned}
\text { Area } & =\int_0^{4 / \lambda}(2 \sqrt{\lambda} \sqrt{x}-\lambda x) d x=\frac{1}{9} \\
& \Rightarrow\left[\frac{2 \sqrt{\lambda} x^{\frac{3}{2}}}{3 / 2}-\frac{\lambda x^2}{2}\right]_0^{4 / \lambda}=\frac{1}{9} \\
& =\frac{4}{3} \sqrt{\lambda} \frac{8}{\lambda^{\frac{1}{2}}}-\lambda \frac{8}{\lambda^2}=\frac{1}{9} \\
& \Rightarrow \frac{32}{3 \lambda}-\frac{8}{\lambda}=\frac{1}{9} \\
& \Rightarrow \frac{8}{3 \lambda}=\frac{1}{9} \\
& \Rightarrow \lambda=24
\end{aligned}$

$\text { If } f\left(\frac{x-4}{x+2}\right)=2 x+1, \quad(x \in \mathbb{R}-[1,-2])$


Example 5:
Then $\int f(x) d x$ equals
(where C is a constant of integration)
1) $12 \log _e|1-x|+3 x+C$
2) $-12 \log _e|1-x|-3 x+C$
3) $12 \log _c|1-x|-3 x+C$
4) $-12 \log _e|1-x|+3 x+C$

Solution

$\begin{aligned}
& \frac{x-4}{x+2}=y \Rightarrow x=\frac{2 y+4}{1-y} \\
& f(y)=2\left(\frac{2 y+4}{1-y}\right)+1=\frac{3 y+9}{1-y} \\
& \text { Now }_{\uparrow} f(x)=\frac{3 x+9}{1-x}
\end{aligned}$

Thus

$\begin{aligned}
& \int f(x) d x=\int \frac{3 x+9}{1-x} d x=\int\left(-3+\frac{12}{-x+1}\right) d x \\
& =-3 x-12 \ln |-x+1|+C
\end{aligned}$

Hence, the answer is the option 2.

Frequently Asked Questions (FAQs)

Q: How does the method of integration by parts relate to product differentiation in reverse?
A:
Integration by parts can be thought of as reversing the product rule of differentiation.
Q: Why is it important to understand the concept of a contour integral in complex analysis?
A:
Contour integrals extend the idea of integration to the complex plane. They are fundamental in complex analysis and have applications in physics and engineering. Contour integrals allow for the evaluation of real integrals that are difficult or impossible to compute directly, showcasing the power of extending integration to complex numbers.
Q: Why is it important to understand the relationship between integration and summation?
A:
The relationship between integration and summation is fundamental to understanding the definition of the definite integral. Riemann sums, which approximate the area under a curve using a finite number of rectangles, converge to the definite integral as the number of rectangles approaches infinity. This connection provides insight into the nature of integration as a continuous summation process.
Q: How does the concept of a moment in physics relate to integration?
A:
In physics, moments (like center of mass or moment of inertia) are calculated using integrals. These calculations involve integrating the product of a quantity (like mass or force) and its distance from a reference point. This application showcases how integration is used to accumulate the effects of distributed quantities, a fundamental concept in many areas of physics and engineering.
Q: What is the significance of the Fundamental Theorem of Line Integrals?
A:
The Fundamental Theorem of Line Integrals is an extension of the Fundamental Theorem of Calculus to line integrals. It states that for a conservative vector field, the line integral can be evaluated by computing the difference in the potential function at the endpoints. This theorem simplifies many line integral calculations and highlights the connection between vector calculus and basic integration.
Q: How does the method of partial fractions decomposition relate to integration?
A:
Partial fractions decomposition is a technique used to integrate rational functions. It involves breaking down a complex fraction into simpler fractions that are easier to integrate. This method showcases how algebraic manipulation can simplify integration problems, and it's a key technique in solving many differential equations.
Q: Why is it important to understand the concept of a volume integral?
A:
Volume integrals extend the concept of integration to three-dimensional space. They are used to calculate properties of solid objects, such as mass, center of mass, or moments of inertia. Understanding volume integrals is crucial for applications in physics and engineering, where properties of three-dimensional objects need to be analyzed.
Q: How does the concept of a probability density function relate to integration?
A:
In probability theory, the integral of a probability density function over an interval gives the probability of an event occurring within that interval. This application of integration is fundamental in statistics and data science, showcasing how calculus concepts are essential in understanding and working with probability distributions.
Q: What is the significance of the Divergence Theorem in vector calculus?
A:
The Divergence Theorem relates a triple integral over a volume to a surface integral over the boundary of that volume. This theorem is a higher-dimensional analogue of the Fundamental Theorem of Calculus and Green's Theorem. It's crucial in physics for understanding the relationship between fields and their sources, particularly in electromagnetism and fluid dynamics.
Q: How does the concept of arc length relate to integration?
A:
Arc length is calculated using integration. The formula for arc length involves integrating the square root of the sum of squares of derivatives, which essentially accumulates infinitesimal straight-line approximations of the curve. This application demonstrates how integration can be used to measure geometric properties of curves.