Newton’s third law of motion definition: This law states that every action has a matching and opposing reaction. If body A applies force Fa to body B, then B applies force Fb to body A at the same time. Furthermore, the forces exerted on each body are equal in size and opposite in direction: Fa = - Fb.
Furthermore, in some cases, one body between these two determines the direction and magnitude fully. Consider the case where item A is exerting force on object B. The force acting on object B is called "action," while the force acting on object A is called "reaction." As previously stated, this law is also known as the action-reaction pair law, with Fa and Fb standing for action and reaction, respectively.
In some circumstances, however, both bodies work together to determine magnitude and direction. It is irrelevant to say which force is "activity" and which “reaction” in this circumstance is. Furthermore, action and reaction happen at the same time belong to the same interaction, and neither happens without the other.
Two skaters push against each other to demonstrate Newton’s third law of motion. The first skater to the left exerts a normal force of N12 on the second skater to the right, while the second skater to the left exerts a normal force of N21 on the first skater.
Both forces have identical magnitudes but opposite directions, as specified by Newton’s third law of motion class 9.
Also read -
The action-reaction pair law can also be observed in daily life. Consider the following applications of Newton’s third law of motion class 9:
Related Topics, |
Newton’s third law of motion says that when someone walks, they push on the floor, and the floor pushes back. This is Newton’s third law of motion in action. Newton’s third law of motion can be observed in action as someone walks: they push on the floor, and the floor pushes back.
Similarly, a car's tires press against the road, which pushes back on the tires—the tires and road push against each other at the same time. These forces are affected by friction; for example, a person or car on ice may be unable to exert the necessary action force to produce the required response force.
The law of conservation of momentum has been derived from Newton’s third law of motion, conservation of momentum is a more fundamental idea (derived from Galilean invariance via Noether's theorem). In circumstances where Newton’s third law of motion appears to break, such as when force fields and particles both have momentum and in quantum mechanics, this holds true.
Also, check-
NCERT Physics Notes:
Frequently Asked Questions (FAQs)