De Moivre’s Theorem is a fundamental concept that connects complex numbers with trigonometry. It provides a simple formula to calculate powers and roots of complex numbers expressed in polar or Euler form. By using De Moivre’s Theorem, problems involving $(\cos \theta + i \sin \theta)^n$ or finding nth roots of complex numbers in mathematics become much easier to solve. In this article, we will explore the formula, proof, and worked examples of De Moivre’s Theorem.
This Story also Contains
De Moivre's Theorem is a fundamental concept in complex numbers used to solve problems involving powers and roots of complex numbers. It also plays a key role in simplifying trigonometric functions for multiple angles. Also known as De Moivre's Identity or De Moivre's Formula, the theorem is named after the mathematician Abraham De Moivre.
De Moivre’s Formula for complex numbers is, for any real value of x,
$(\cos x+i \cdot \sin x)^n=\cos (n x)+i \cdot \sin (n x)$
De Moivre’s Theorem is fundamentally based on the Euler form representation of complex numbers. This theorem establishes a relationship between complex numbers in trigonometric form and their powers.
For any integer $n \in \mathbb{I}$, real number $\theta \in \mathbb{R}$, and imaginary unit $i = \sqrt{-1}$, the theorem states:
$(\cos \theta +i \cdot \sin \theta)^n=\cos (n \theta)+i \cdot \sin (n \theta)$
We start with Euler’s formula:
$e^{i \theta} = \cos \theta + i \sin \theta$
Raising both sides to the integer power $n$, we get:
$(e^{i \theta})^n = (\cos \theta + i \sin \theta)^n$
Therefore,
$e^{i n \theta} = (\cos \theta + i \sin \theta)^n$
Using Euler’s formula again:
$\cos (n \theta) + i \sin (n \theta) = (\cos \theta + i \sin \theta)^n$
This completes the proof for integer powers.
For angles $ \theta_1, \theta_2, \ldots, \theta_n \in \mathbb{R} $, the product of complex numbers in trigonometric form is:
$(\cos \theta_1 + i \sin \theta_1)(\cos \theta_2 + i \sin \theta_2) \cdots (\cos \theta_n + i \sin \theta_n) = \cos (\theta_1 + \theta_2 + \cdots + \theta_n) + i \sin (\theta_1 + \theta_2 + \cdots + \theta_n)$
From Euler's formula, for each $\theta_k$, $e^{i \theta_k} = \cos \theta_k + i \sin \theta_k$
Therefore, $ (\cos \theta_1 + i \sin \theta_1)(\cos \theta_2 + i \sin \theta_2) \cdots (\cos \theta_n + i \sin \theta_n) = e^{i \theta_1} \cdot e^{i \theta_2} \cdots e^{i \theta_n} = e^{i (\theta_1 + \theta_2 + \cdots + \theta_n)} = \cos (\theta_1 + \theta_2 + \cdots + \theta_n) + i \sin (\theta_1 + \theta_2 + \cdots + \theta_n)$
Note on Rational Powers: If $n$ is a rational number, $n = \frac{p}{q}$ where $\text{HCF}(p, q) = 1$ and $q > 0$, then the expression $z^n$ (where $z$ is a complex number) will have $q$ distinct values. One of these values is:
$\cos (n \theta) + i \sin (n \theta)$
$(\cos \theta - i \sin \theta)^n = \cos(n \theta) - i \sin(n \theta)$
$ (\sin \theta + i \cos \theta)^n = i^n \left( \cos(n \theta) - i \sin(n \theta) \right)$ (by factoring out i first)
$(\sin \theta - i \cos \theta)^n = (-i)^n \left( \cos(n \theta) + i \sin(n \theta) \right)$ (by factoring out $i$ first)
Important: $(\cos \theta + i \sin \phi)^n \neq \cos(n \theta) + i \sin(n \phi) \quad \text{unless } \theta = \phi$
Finding powers of complex numbers: Simplifies $(\cos \theta + i \sin \theta)^n$ calculations.
Calculating roots of complex numbers: Essential for extracting nth roots using polar form or Euler form.
Solving trigonometric equations: Provides a method for multiple-angle identities
1) 0
2) 1
3) 2
4) 3
Solution:
As we have learned in De Moivre's Theorem:
$(\cos \theta + i \sin \theta)^n = \cos n\theta + i \sin n \theta \quad \forall n \in \mathbb{I}$
Now, $a^2 = \cos 2\alpha + i \sin 2\alpha = e^{i 2\alpha}$
$b^2 = \cos 2\beta + i \sin 2\beta = e^{i 2\beta}$
$c^2 = \cos 2\gamma + i \sin 2\gamma = e^{i 2\gamma}$
Given, $\frac{a^2}{b^2} + \frac{b^2}{c^2} + \frac{c^2}{a^2} = 1$
$\Rightarrow \frac{e^{i 2\alpha}}{e^{i 2\beta}} + \frac{e^{i 2\beta}}{e^{i 2\gamma}} + \frac{e^{i 2\gamma}}{e^{i 2\alpha}} = 1$
$\Rightarrow e^{i 2(\alpha - \beta)} + e^{i 2(\beta - \gamma)} + e^{i 2(\gamma - \alpha)} = 1$
$\Rightarrow \cos (2\alpha - 2\beta) + i \sin (2\alpha - 2\beta) + \cos (2\beta - 2\gamma) + i \sin (2\beta - 2\gamma) + \cos (2\gamma - 2\alpha) + i \sin (2\gamma - 2\alpha) = 1$
Comparing real and imaginary parts,
$\cos (2\alpha - 2\beta) + \cos (2\beta - 2\gamma) + \cos (2\gamma - 2\alpha) = 1$ and $\sin (2\alpha - 2\beta) + \sin (2\beta - 2\gamma) + \sin (2\gamma - 2\alpha) = 0$
Hence, the answer is option 2.
1) $x^2-4 x-1=0$
2) $x^2-4 x+1=0$
3) $x^2+4 x-1=0$
4) $x^2+4 x+1=0$
Solution:
$(1 - \sqrt{3} i)^{200} = 2^{199} (p + i q)$
$\Rightarrow 2^{200} \operatorname{cis}\left(\frac{-\pi}{3}\right)^{200} = 2^{199} (p + i q)$
$\Rightarrow 2^{200} \operatorname{cis}\left(-\frac{200 \pi}{3}\right) = 2^{199} (p + i q)$
$\Rightarrow 2 \operatorname{cis}\left(-66 \pi - \frac{2 \pi}{3}\right) = p + i q$
$\Rightarrow 2 \operatorname{cis}\left(\frac{-2 \pi}{3}\right) = p + i q$
$\Rightarrow 2 \left(-\frac{1}{2} - \frac{\sqrt{3} i}{2}\right) = p + i q$
$\Rightarrow p = -1, \quad q = -\sqrt{3}$
Now, $\alpha = p + q + q^2 = 2 - \sqrt{3}$
$\beta = p - q + q^2 = 2 + \sqrt{3}$
Required quadratic is $x^2 - 4x + 1 = 0$
Hence, the answer is option 2.
1)$-\frac{1}{2}(\sqrt{3}-i)$
2) $-\frac{1}{2}(1-i \sqrt{3})$
3) $\frac{1}{2}(1-i \sqrt{3})$
4) $\frac{1}{2}(\sqrt{3}+i)$
Solution:
$\frac{\pi}{2} - \frac{2 \pi}{9} = \frac{9 \pi - 4 \pi}{18} = \frac{5 \pi}{18}$
$\Rightarrow \frac{1 + \cos \frac{5 \pi}{18} + i \sin \frac{5 \pi}{18}}{1 + \cos \frac{5 \pi}{18} - i \sin \frac{5 \pi}{18}}$
$= \frac{2 \cos^2 \frac{5 \pi}{36} + 2 i \sin \frac{5 \pi}{36} \cos \frac{5 \pi}{36}}{2 \cos^2 \frac{5 \pi}{36} - 2 i \sin \frac{5 \pi}{36} \cos \frac{5 \pi}{36}} \Rightarrow \left(\frac{e^{i \frac{5 \pi}{36}}}{e^{-i \frac{5 \pi}{36}}}\right)^3$
$= e^{i \left(\frac{5 \pi}{18}\right) 3} = e^{i \frac{5 \pi}{6}}$
$= \cos \frac{5 \pi}{6} + i \sin \frac{5 \pi}{6} = -\frac{\sqrt{3}}{2} + \frac{i}{2}$
Hence, the answer is option 1.
Example 4: The complex number $z=\frac{i-1}{\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}}$ is equal to :
1) $\sqrt{2} i\left(\cos \frac{5 \pi}{12}-i \sin \frac{5 \pi}{12}\right)$
2) $\sqrt{2}\left(\cos \frac{\pi}{12}+\sin \frac{\pi}{12}\right)$
3) $\sqrt{2}\left(\cos \frac{5 \pi}{12}+i \sin \frac{5 \pi}{12}\right)$
4) $\cos \frac{\pi}{12}-1 \sin \frac{\pi}{12}$
Solution:
$Z=\frac{i-1}{\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}}$
$\mathrm{i}-1=\sqrt{2}\left(\frac{-1}{\sqrt{2}}+\frac{\mathrm{i}}{\sqrt{2}}\right)=\sqrt{2} \cdot \mathrm{e}^{\mathrm{i} \frac{3 \pi}{4}}$
$z=\frac{\sqrt{2} \cdot e^{i \frac{3 \pi}{4}}}{e^{i \cdot \frac{3 \pi}{4}}}$
$=\sqrt{2} \cdot \mathrm{e}^{\mathrm{i}\left(\frac{3 \pi}{4}-\frac{\pi}{3}\right)}$
$=\sqrt{2} \mathrm{e}^{\frac{5 \pi}{12} \mathrm{i}}$
$=\sqrt{2}\left(\cos \left(\frac{5 \pi}{12}\right)+\mathrm{i} \sin \left(\frac{5 \pi}{12}\right)\right)$
Hence, the answer is the option (3).
Below is the list of topics related to De Moivre’s Theorem that are essential for understanding its applications and concepts.
Conjugates of Complex Numbers |
Argument of Complex Number |
Nature of Roots of Quadratic Equations |
Multiplication of Complex Numbers |
Polar Form of Complex Number |
This section offers essential solutions, exemplar problems, and notes for Class 11 Maths Chapter 5 on Complex Numbers and Quadratic Equations. These materials support clear understanding and effective exam preparation.
NCERT Solutions for Class 11 Maths Chapter 5 -Complex Numbers and Quadratic Equations
NCERT Exemplar Class 11 Maths Solutions for Chapter 5 - Complex Numbers and Quadratic Equations
NCERT Class 11 Maths Notes for Chapter 5 - Complex Numbers and Quadratic Equations
Below are practice questions based on De Moivre's Theorem to strengthen understanding and application skills. These help in finding powers and roots of complex numbers effectively.
De Moivre's Theorem - Practice Question MCQ
We have shared practice question sets for related topics below:
Frequently Asked Questions (FAQs)
Yes, De Moivre's Theorem is particularly useful for finding and understanding complex roots of unity. The nth roots of unity are given by e^(2πik/n) = cos(2πk/n) + i sin(2πk/n) for k = 0, 1, ..., n-1. This formula comes directly from De Moivre's Theorem.
De Moivre's Theorem is closely related to Euler's formula, e^(iθ) = cos θ + i sin θ. In fact, De Moivre's Theorem can be derived from Euler's formula. If we raise both sides of Euler's formula to the power n, we get (e^(iθ))^n = e^(inθ) = cos(nθ) + i sin(nθ), which is essentially De Moivre's Theorem.