DeMoivre's Theorem - Definition, Proof, Uses and Examples

DeMoivre's Theorem - Definition, Proof, Uses and Examples

Komal MiglaniUpdated on 08 Sep 2025, 08:51 PM IST

De Moivre’s Theorem is a fundamental concept that connects complex numbers with trigonometry. It provides a simple formula to calculate powers and roots of complex numbers expressed in polar or Euler form. By using De Moivre’s Theorem, problems involving $(\cos \theta + i \sin \theta)^n$ or finding nth roots of complex numbers in mathematics become much easier to solve. In this article, we will explore the formula, proof, and worked examples of De Moivre’s Theorem.

This Story also Contains

  1. De Moivre's Theorem
  2. De Moivre’s Theorem: Proof
  3. Applications of De Moivre’s Theorem
  4. Solved Examples Based on De-Moivre's Theorem
  5. List of topics related to the De-Moivre's Theorem
  6. NCERT Resources
  7. Practice Questions based on the De-Moivre's Theorem
DeMoivre's Theorem - Definition, Proof, Uses and Examples
DeMoivre's Theorem - Definition, Proof, Uses and Examples

De Moivre's Theorem

De Moivre's Theorem is a fundamental concept in complex numbers used to solve problems involving powers and roots of complex numbers. It also plays a key role in simplifying trigonometric functions for multiple angles. Also known as De Moivre's Identity or De Moivre's Formula, the theorem is named after the mathematician Abraham De Moivre.

De Moivre’s Formula

De Moivre’s Formula for complex numbers is, for any real value of x,

$(\cos x+i \cdot \sin x)^n=\cos (n x)+i \cdot \sin (n x)$

De Moivre’s Theorem: Proof

De Moivre’s Theorem is fundamentally based on the Euler form representation of complex numbers. This theorem establishes a relationship between complex numbers in trigonometric form and their powers.

Statement of the Theorem

For any integer $n \in \mathbb{I}$, real number $\theta \in \mathbb{R}$, and imaginary unit $i = \sqrt{-1}$, the theorem states:

$(\cos \theta +i \cdot \sin \theta)^n=\cos (n \theta)+i \cdot \sin (n \theta)$

Proof Using Euler’s Formula

We start with Euler’s formula:
$e^{i \theta} = \cos \theta + i \sin \theta$

Raising both sides to the integer power $n$, we get:
$(e^{i \theta})^n = (\cos \theta + i \sin \theta)^n$

Therefore,
$e^{i n \theta} = (\cos \theta + i \sin \theta)^n$

Using Euler’s formula again:
$\cos (n \theta) + i \sin (n \theta) = (\cos \theta + i \sin \theta)^n$

This completes the proof for integer powers.

Extension to Multiple Angles

For angles $ \theta_1, \theta_2, \ldots, \theta_n \in \mathbb{R} $, the product of complex numbers in trigonometric form is:
$(\cos \theta_1 + i \sin \theta_1)(\cos \theta_2 + i \sin \theta_2) \cdots (\cos \theta_n + i \sin \theta_n) = \cos (\theta_1 + \theta_2 + \cdots + \theta_n) + i \sin (\theta_1 + \theta_2 + \cdots + \theta_n)$

Proof of the Product Formula

From Euler's formula, for each $\theta_k$, $e^{i \theta_k} = \cos \theta_k + i \sin \theta_k$

Therefore, $ (\cos \theta_1 + i \sin \theta_1)(\cos \theta_2 + i \sin \theta_2) \cdots (\cos \theta_n + i \sin \theta_n) = e^{i \theta_1} \cdot e^{i \theta_2} \cdots e^{i \theta_n} = e^{i (\theta_1 + \theta_2 + \cdots + \theta_n)} = \cos (\theta_1 + \theta_2 + \cdots + \theta_n) + i \sin (\theta_1 + \theta_2 + \cdots + \theta_n)$

Note on Rational Powers: If $n$ is a rational number, $n = \frac{p}{q}$ where $\text{HCF}(p, q) = 1$ and $q > 0$, then the expression $z^n$ (where $z$ is a complex number) will have $q$ distinct values. One of these values is:
$\cos (n \theta) + i \sin (n \theta)$

Additional Variations of the Theorem

$(\cos \theta - i \sin \theta)^n = \cos(n \theta) - i \sin(n \theta)$

$ (\sin \theta + i \cos \theta)^n = i^n \left( \cos(n \theta) - i \sin(n \theta) \right)$ (by factoring out i first)

$(\sin \theta - i \cos \theta)^n = (-i)^n \left( \cos(n \theta) + i \sin(n \theta) \right)$ (by factoring out $i$ first)

Important: $(\cos \theta + i \sin \phi)^n \neq \cos(n \theta) + i \sin(n \phi) \quad \text{unless } \theta = \phi$

Applications of De Moivre’s Theorem

  • Finding powers of complex numbers: Simplifies $(\cos \theta + i \sin \theta)^n$ calculations.

  • Calculating roots of complex numbers: Essential for extracting nth roots using polar form or Euler form.

  • Solving trigonometric equations: Provides a method for multiple-angle identities

Solved Examples Based on De-Moivre's Theorem

Example 1: Let $a=\cos \alpha+i \sin \alpha, b=\cos \beta+i \sin \beta, c=\cos \gamma+i \sin \gamma$ and $\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}=1$ then $\cos (2 \alpha-2 \beta)+\cos (23-2 \gamma)+\cos (2 \gamma-2 a)$ equals

1) 0

2) 1

3) 2

4) 3

Solution:

As we have learned in De Moivre's Theorem:
$(\cos \theta + i \sin \theta)^n = \cos n\theta + i \sin n \theta \quad \forall n \in \mathbb{I}$

Now, $a^2 = \cos 2\alpha + i \sin 2\alpha = e^{i 2\alpha}$
$b^2 = \cos 2\beta + i \sin 2\beta = e^{i 2\beta}$
$c^2 = \cos 2\gamma + i \sin 2\gamma = e^{i 2\gamma}$

Given, $\frac{a^2}{b^2} + \frac{b^2}{c^2} + \frac{c^2}{a^2} = 1$

$\Rightarrow \frac{e^{i 2\alpha}}{e^{i 2\beta}} + \frac{e^{i 2\beta}}{e^{i 2\gamma}} + \frac{e^{i 2\gamma}}{e^{i 2\alpha}} = 1$

$\Rightarrow e^{i 2(\alpha - \beta)} + e^{i 2(\beta - \gamma)} + e^{i 2(\gamma - \alpha)} = 1$

$\Rightarrow \cos (2\alpha - 2\beta) + i \sin (2\alpha - 2\beta) + \cos (2\beta - 2\gamma) + i \sin (2\beta - 2\gamma) + \cos (2\gamma - 2\alpha) + i \sin (2\gamma - 2\alpha) = 1$

Comparing real and imaginary parts,

$\cos (2\alpha - 2\beta) + \cos (2\beta - 2\gamma) + \cos (2\gamma - 2\alpha) = 1$ and $\sin (2\alpha - 2\beta) + \sin (2\beta - 2\gamma) + \sin (2\gamma - 2\alpha) = 0$

Hence, the answer is option 2.

Example 2: Let $p,q \in \mathbb{R}$ and $(1-\sqrt{3} i)^{200}=2^{199}(p+i q), i=\sqrt{-1}$
Then $p+q+q^2$ and $p-q+q^2$ are roots of the equation

1) $x^2-4 x-1=0$

2) $x^2-4 x+1=0$

3) $x^2+4 x-1=0$

4) $x^2+4 x+1=0$

Solution:

$(1 - \sqrt{3} i)^{200} = 2^{199} (p + i q)$

$\Rightarrow 2^{200} \operatorname{cis}\left(\frac{-\pi}{3}\right)^{200} = 2^{199} (p + i q)$

$\Rightarrow 2^{200} \operatorname{cis}\left(-\frac{200 \pi}{3}\right) = 2^{199} (p + i q)$

$\Rightarrow 2 \operatorname{cis}\left(-66 \pi - \frac{2 \pi}{3}\right) = p + i q$

$\Rightarrow 2 \operatorname{cis}\left(\frac{-2 \pi}{3}\right) = p + i q$

$\Rightarrow 2 \left(-\frac{1}{2} - \frac{\sqrt{3} i}{2}\right) = p + i q$

$\Rightarrow p = -1, \quad q = -\sqrt{3}$

Now, $\alpha = p + q + q^2 = 2 - \sqrt{3}$

$\beta = p - q + q^2 = 2 + \sqrt{3}$

Required quadratic is $x^2 - 4x + 1 = 0$

Hence, the answer is option 2.

Example 3: The value of $\left(\frac{1+\sin \frac{2 \pi}{9}+i \cos \frac{2 \pi}{9}}{1+\sin \frac{2 \pi}{9} i \cos \frac{2 \pi}{9}}\right)^3$ is

1)$-\frac{1}{2}(\sqrt{3}-i)$

2) $-\frac{1}{2}(1-i \sqrt{3})$

3) $\frac{1}{2}(1-i \sqrt{3})$

4) $\frac{1}{2}(\sqrt{3}+i)$

Solution:

$\frac{\pi}{2} - \frac{2 \pi}{9} = \frac{9 \pi - 4 \pi}{18} = \frac{5 \pi}{18}$

$\Rightarrow \frac{1 + \cos \frac{5 \pi}{18} + i \sin \frac{5 \pi}{18}}{1 + \cos \frac{5 \pi}{18} - i \sin \frac{5 \pi}{18}}$

$= \frac{2 \cos^2 \frac{5 \pi}{36} + 2 i \sin \frac{5 \pi}{36} \cos \frac{5 \pi}{36}}{2 \cos^2 \frac{5 \pi}{36} - 2 i \sin \frac{5 \pi}{36} \cos \frac{5 \pi}{36}} \Rightarrow \left(\frac{e^{i \frac{5 \pi}{36}}}{e^{-i \frac{5 \pi}{36}}}\right)^3$

$= e^{i \left(\frac{5 \pi}{18}\right) 3} = e^{i \frac{5 \pi}{6}}$

$= \cos \frac{5 \pi}{6} + i \sin \frac{5 \pi}{6} = -\frac{\sqrt{3}}{2} + \frac{i}{2}$

Hence, the answer is option 1.

Example 4: The complex number $z=\frac{i-1}{\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}}$ is equal to :

1) $\sqrt{2} i\left(\cos \frac{5 \pi}{12}-i \sin \frac{5 \pi}{12}\right)$
2) $\sqrt{2}\left(\cos \frac{\pi}{12}+\sin \frac{\pi}{12}\right)$
3) $\sqrt{2}\left(\cos \frac{5 \pi}{12}+i \sin \frac{5 \pi}{12}\right)$
4) $\cos \frac{\pi}{12}-1 \sin \frac{\pi}{12}$

Solution:

$Z=\frac{i-1}{\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}}$
$\mathrm{i}-1=\sqrt{2}\left(\frac{-1}{\sqrt{2}}+\frac{\mathrm{i}}{\sqrt{2}}\right)=\sqrt{2} \cdot \mathrm{e}^{\mathrm{i} \frac{3 \pi}{4}}$
$z=\frac{\sqrt{2} \cdot e^{i \frac{3 \pi}{4}}}{e^{i \cdot \frac{3 \pi}{4}}}$
$=\sqrt{2} \cdot \mathrm{e}^{\mathrm{i}\left(\frac{3 \pi}{4}-\frac{\pi}{3}\right)}$
$=\sqrt{2} \mathrm{e}^{\frac{5 \pi}{12} \mathrm{i}}$
$=\sqrt{2}\left(\cos \left(\frac{5 \pi}{12}\right)+\mathrm{i} \sin \left(\frac{5 \pi}{12}\right)\right)$
Hence, the answer is the option (3).

List of topics related to the De-Moivre's Theorem

Below is the list of topics related to De Moivre’s Theorem that are essential for understanding its applications and concepts.

JEE Main Highest Scoring Chapters & Topics
Focus on high-weightage topics with this eBook and prepare smarter. Gain accuracy, speed, and a better chance at scoring higher.
Download E-book

Practice Questions based on the De-Moivre's Theorem

Below are practice questions based on De Moivre's Theorem to strengthen understanding and application skills. These help in finding powers and roots of complex numbers effectively.

De Moivre's Theorem - Practice Question MCQ

We have shared practice question sets for related topics below:

Frequently Asked Questions (FAQs)

Q: Can De Moivre's Theorem be used for complex roots of unity?
A:

Yes, De Moivre's Theorem is particularly useful for finding and understanding complex roots of unity. The nth roots of unity are given by e^(2πik/n) = cos(2πk/n) + i sin(2πk/n) for k = 0, 1, ..., n-1. This formula comes directly from De Moivre's Theorem.

Q: What's the relationship between De Moivre's Theorem and Euler's formula?
A:

De Moivre's Theorem is closely related to Euler's formula, e^(iθ) = cos θ + i sin θ. In fact, De Moivre's Theorem can be derived from Euler's formula. If we raise both sides of Euler's formula to the power n, we get (e^(iθ))^n = e^(inθ) = cos(nθ) + i sin(nθ), which is essentially De Moivre's Theorem.