While solving systems of equations or working with matrices, determinants help you find solutions using a specific formula. This chapter covers the basics of determinants, their formulas, and how to calculate them easily. You will also learn how to find the value of determinants of different orders and understand their properties. In this article, you will learn about determinants with examples, formulas, and practice problems to strengthen your understanding in mathematics.
This Story also Contains
The determinant of a matrix A is a number that is calculated from the matrix. For a determinant to exist, matrix $A$ must be a square matrix. Matrix is only a representation while determinant is the value of the matrix. The determinant of a matrix is denoted by $\operatorname{det} \mathrm{A}$ or $|\mathrm{A}|$.
To every square matrix $A=\left[a_{i j}\right]$ of order $n$, we can associate a number called determinant of the matrix $A$.
If $A=\left[\begin{array}{cccc}a_{11} & a_{12} & \cdots & a_{1 n} \\ a_{21} & a_{22} & \cdots & a_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n 1} & a_{n 2} & \cdots & a_{n n}\end{array}\right]$, then determinant of $A$ is written as $|A|=\left|\begin{array}{cccc}a_{11} & a_{12} & \cdots & a_{1 n} \\ a_{21} & a_{22} & \cdots & a_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n 1} & a_{n 2} & \cdots & a_{n n}\end{array}\right|$.
Let $A=\left[a_{i j}\right]_{3 \times 3}$ be a given square matrix of order $3$ . The minor of an arbitrary element $a_{i j}$ is the determinant obtained by deleting the $i^{\text {th }}$ row and $j^{\text {th }}$ column in which the element $a_{i j}$ stands. The minor of $a_{i j}$ is usually denoted by $M_{i j}$.
The cofactor is a signed minor. The cofactor of $a_{i j}$ is usually denoted by $A_{i j}$ and is defined as $A_{i j}=(-1)^{i+j} M_{i j}$.
For instance, consider the $3 \times 3$ matrix defined by $A=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]$
Then the minors and cofactors of the elements $a_{11}, a_{12}, a_{13}$ are given as follows :
(i) Minor of $a_{11}$ is $\mathrm{M}_{11} \quad=\left|\begin{array}{ll}a_{22} & a_{23} \\ a_{32} & a_{33}\end{array}\right|=a_{22} a_{33}-a_{32} a_{23}$
Cofactor of $a_{11}$ is $A_{11}=(-1)^{1+1} M_{11}=\left|\begin{array}{ll}a_{22} & a_{23} \\ a_{32} & a_{33}\end{array}\right|=a_{22} a_{33}-a_{32} a_{23}$
(ii) Minor of $a_{12}$ is $M_{12} \quad=\left|\begin{array}{ll}a_{21} & a_{23} \\ a_{31} & a_{33}\end{array}\right|=a_{21} a_{33}-a_{31} a_{23}$
Cofactor $a_{12}$ is $A_{12} \quad=(-1)^{1+2}\left|\begin{array}{ll}a_{21} & a_{23} \\ a_{31} & a_{33}\end{array}\right|=-\left(a_{21} a_{33}-a_{31} a_{23}\right)$
(iii) Minor of $a_{13}$ is $M_{13} \quad=\left|\begin{array}{ll}a_{21} & a_{22} \\ a_{31} & a_{32}\end{array}\right|=a_{21} a_{32}-a_{31} a_{22}$
Cofactor of $a_{13}$ is $A_{13}=(-1)^{1+3} M_{13}=\left|\begin{array}{ll}a_{21} & a_{22} \\ a_{31} & a_{32}\end{array}\right|=a_{21} a_{32}-a_{31} a_{22}$.
The determinant formula for $2 \times 2$ matrices
$
\mathrm{A}=\left[\begin{array}{ll}
a_1 & a_2 \\
b_1 & b_2
\end{array}\right]
$
then $\operatorname{det} \mathrm{A}$ is :
$
|\mathrm{A}|=\left|\begin{array}{ll}
a_1 & a_2 \\
b_1 & b_2
\end{array}\right|=\mathrm{a}_1 \mathrm{b}_2-\mathrm{a}_2 \mathrm{b}_1
$
For a $3 \times 3$ matrix determinant can be calculated in the following way :
$
\text { let } \mathrm{A}=\left[\begin{array}{lll}
a_1 & a_2 & a_3 \\
b_1 & b_2 & b_3 \\
c_1 & c_2 & c_3
\end{array}\right]
$
then we find $\operatorname{det} \mathrm{A}$ in following way
$
|A|=a_1\left(b_2 c_3-b_3 c_2\right)-a_2\left(b_1 c_3-c_1 b_3\right)+a_3\left(b_1 c_2-b_2 c_1\right)
$
This same process we follow to evaluate the determinant of the matrix of any order. Notice that we start the first term with the +ve sign then 2nd with the -ve sign and 3rd again +ve sign, this sign sequence is followed for any order of matrix.
To calculate the determinant of a matrix, first ensure it is square (same number of rows and columns). For a 2x2 matrix, multiply the diagonal elements and subtract the product of the off-diagonal elements. Let us understand in detail:
Let $A=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]$ be a matrix of order 2. Then the determinant of $A$ is defined as
$
|A|=\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right|=a_{11} \quad a_{22}-a_{21} a_{12}
$
Example: Let $|A|=$ $\left|\begin{array}{cc}2 & 4 \\ -1 & 2\end{array}\right|=(2 \times 2)-(-1 \times 4)=4+4=8$.
The determinant of matrix $
\mathrm{A}=\left[\begin{array}{lll}
a_1 & a_2 & a_3 \\
b_1 & b_2 & b_3 \\
c_1 & c_2 & c_3
\end{array}\right]
$ is given by
$\qquad|\mathrm{A}|=\left|\begin{array}{lll}a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3\end{array}\right|=a_1\left|\begin{array}{ll}b_2 & c_2 \\ b_3 & c_3\end{array}\right|-b_1\left|\begin{array}{ll}a_2 & c_2 \\ a_3 & c_3\end{array}\right|+c_1\left|\begin{array}{ll}a_2 & b_2 \\ a_3 & b_3\end{array}\right|$
Example: $|A|= \left|\begin{array}{ccc}0 & \sin \alpha & -\cos \alpha \\ -\sin \alpha & 0 & \sin \beta \\ \cos \alpha & -\sin \beta & 0\end{array}\right|$
$\begin{aligned} & =0\left|\begin{array}{cc}0 & \sin \beta \\ -\sin \beta & 0\end{array}\right|-\sin \alpha\left|\begin{array}{cc}-\sin \alpha & \sin \beta \\ \cos \alpha & 0\end{array}\right|-\cos \alpha\left|\begin{array}{cc}-\sin \alpha & 0 \\ \cos \alpha & -\sin \beta\end{array}\right| \\ & =0-\sin \alpha(0-\sin \beta \cos \alpha)-\cos \alpha(\sin \alpha \sin \beta-0) \\ & =\sin \alpha \sin \beta \cos \alpha-\cos \alpha \sin \alpha \sin \beta=0\end{aligned}$
Evaluation of determinants of matrices of order $3$ by the Sarrus rule,
Let $A=\left[a_{i j}\right]_{3 \times 3}=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]$
Write the entries of Matrix $A$ as follows :
Then $|A|$ is computed as follows :
$
|A|=\left[a_{11} a_{22} a_{33}+a_{12} a_{23} a_{31}+a_{13} a_{21} a_{32}\right]-\left[a_{33} a_{21} a_{12}+a_{32} a_{23} a_{11}+a_{31} a_{22} a_{13}\right]
$
Notice that we start the first term with the +ve sign then 2nd with the -ve sign and 3rd again +ve sign, this sign sequence is followed for any order of matrix.
Example: $A=\left[\begin{array}{ccc}3 & 4 & 1 \\ 0 & -1 & 2 \\ 5 & -2 & 6\end{array}\right]$
$\begin{aligned}|A| & =[3(-1)(6)+4(2)(5)+1(0)(-2)]-[5(-1)(1)+(-2)(2) 3+6(0)(4)] \\ & =[-18+40+0]-[-5-12+0]=22+17=39\end{aligned}$
There are two types of multiplication of determinants:
1) Multiplication of determinant by scalar quantity
2) Multiplication of determinant by another determinant
Multiplication of determinant by scalar quantity
If $A$ is a square matrix and $k$ is a scalar quantity then, $|\mathrm{kA}|=\mathrm{k}^{\mathrm{n}}|\mathrm{A}|$, where $n$ is the order of $A$
Multiplication of a determinant by another determinant
Determinant multiplication is a binary operation that produces a determinant from two determinants. For determinant multiplication, the order of both the determinants should be the same.
Multiplication of two determinants can be done by 4 methods, namely,
Let two determinants of second-order be
$\Delta_1=\left|\begin{array}{ll}a_1 & b_1 \\ a_2 & b_2\end{array}\right| \quad$ and $\quad \Delta_2=\left|\begin{array}{ll}\alpha_1 & \beta_1 \\ \alpha_2 & \beta_2\end{array}\right|$
We can multiply these by row-by-row or column-by-column or row-by-column or column-by-row
Row-by-row multiplication of these two determinants is given by
$\Delta_1 \times \Delta_2=\left|\begin{array}{ll}\left(a_1 \alpha_1+b_1 \alpha_2\right) & \left(a_1 \beta_1+b_1 \beta_2\right) \\ \left(a_2 \alpha_1+b_2 \alpha_2\right) & \left(a_2 \beta_1+b_2 \beta_2\right)\end{array}\right|$
Row-by-column multiplication of these two determinants is given by
$\Delta_1 \times \Delta_2=\left|\begin{array}{ll}\left(a_1 \alpha_1+b_1 \beta_1\right) & \left(a_1 \alpha_2+b_1 \beta_2\right) \\ \left(a_2 \alpha_1+b_2 \beta_1\right) & \left(a_2 \alpha_2+b_2 \beta_2\right)\end{array}\right|$
Column-by-row multiplication of these two determinants is given by
$\Delta_1 \times \Delta_2=\left|\begin{array}{ll}\left(a_1 \alpha_1+a_2 \alpha_2\right) & \left(b_1 \beta_1+b_2 \beta_2\right) \\ \left(a_1 \alpha_1+a_2 \alpha_2\right) & \left(b_1 \beta_1+b_2 \beta_2\right)\end{array}\right|$
Column-by-column multiplication of these two determinants is given by
$\Delta_1 \times \Delta_2=\left|\begin{array}{ll}\left(a_1 \alpha_1+a_2 \alpha_2\right) & \left(b_1 \beta_1+b_2 \beta_2\right) \\ \left(a_1 \alpha_1+a_2 \alpha_2\right) & \left(b_1 \beta_1+b_2 \beta_2\right)\end{array}\right|$
Let two determinants of third-order be
$\begin{equation}
\begin{aligned}
&\Delta_1=\left|\begin{array}{lll}
a_1 & b_1 & c_1 \\
a_2 & b_2 & c_2 \\
a_3 & b_3 & c_3
\end{array}\right| \text { and } \Delta_2=\left|\begin{array}{ccc}
\alpha_1 & \beta_1 & \gamma_1 \\
\alpha_2 & \beta_2 & \gamma_2 \\
\alpha_3 & \beta_3 & \gamma_3
\end{array}\right|
\end{aligned}
\end{equation}$
We can multiply these row-by-row or column-by-column or row-by-column or column-by-row
Row-by-row multiplication of these two determinants is given by
$\begin{equation}
\begin{aligned}
&\Delta_1 \times \Delta_2=\left|\begin{array}{lll}
a_1 \alpha_1+b_1 \beta_1+c_1 \gamma_1 & a_1 \alpha_2+b_1 \beta_2+c_1 \gamma_2 & a_1 \alpha_3+b_1 \beta_3+c_1 \gamma_3 \\
a_2 \alpha_1+b_2 \beta_1+c_2 \gamma_1 & a_2 \alpha_2+b_2 \beta_2+c_2 \gamma_2 & a_2 \alpha_3+b_2 \beta_3+c_2 \gamma_3 \\
a_3 \alpha_1+b_3 \beta_1+c_3 \gamma_1 & a_3 \alpha_2+b_3 \beta_2+c_3 \gamma_2 & a_3 \alpha_3+b_3 \beta_3+c_3 \gamma_3
\end{array}\right|
\end{aligned}
\end{equation}$
Row-by-column multiplication of these two determinants is given by
$\Delta_1 \times \Delta_2=\left|\begin{array}{lll}a_1 \alpha_1+b_1 \alpha_2+c_1 \alpha_3 & a_1 \beta_1+b_1 \beta_2+c_1 \beta_3 & a_1 \gamma_1+b_1 \gamma_2+c_1 \gamma_3 \\ a_2 \alpha_1+b_2 \alpha_2+c_2 \alpha_3 & a_2 \beta_1+b_2 \beta_2+c_2 \beta_3 & a_2 \gamma_1+b_2 \gamma_2+c_2 \gamma_3 \\ a_3 \alpha_1+b_3 \alpha_2+c_3 \alpha_3 & a_3 \beta_1+b_3 \beta_2+c_3 \beta_3 & a_3 \gamma_1+b_3 \gamma_2+c_3 \gamma_3\end{array}\right|$
Column-by-row multiplication of these two determinants is given by
$\Delta_1 \times \Delta_2=\left|\begin{array}{lll}a_1 \cdot \alpha_1+a_2 \cdot \beta_1+a_3 \cdot \gamma_1 & b_1 \cdot \alpha_1+b_2 \cdot \beta_1+b_3 \cdot \gamma_1 & c_1 \cdot \alpha_1+c_2 \cdot \beta_1+c_3 \cdot \gamma_1 \\ a_1 \cdot \alpha_2+a_2 \cdot \beta_2+a_3 \cdot \gamma_2 & b_1 \cdot \alpha_2+b_2 \cdot \beta_2+b_3 \cdot \gamma_2 & c_1 \cdot \alpha_2+c_2 \cdot \beta_2+c_3 \cdot \gamma_2 \\ a_1 \cdot \alpha_3+a_2 \cdot \beta_3+a_3 \cdot \gamma_3 & b_1 \cdot \alpha_3+b_2 \cdot \beta_3+b_3 \cdot \gamma_3 & c_1 \cdot \alpha_3+c_2 \cdot \beta_3+c_3 \cdot \gamma_3\end{array}\right|$
Column-by-column multiplication of these two determinants is given by
$\Delta_1 \times \Delta_2=\left|\begin{array}{lll}a_1 \alpha_1+a_2 \alpha_2+a_3 \alpha_3 & b_1 \beta_1+b_2 \beta_2+b_3 \beta_3 & c_1 \gamma_1+c_2 \gamma_2+c_3 \gamma_3 \\ a_1 \alpha_1+a_2 \alpha_2+a_3 \alpha_3 & b_1 \beta_1+b_2 \beta_2+b_3 \beta_3 & c_1 \gamma_1+c_2 \gamma_2+c_3 \gamma_3 \\ a_1 \alpha_1+a_2 \alpha_2+a_3 \alpha_3 & b_1 \beta_1+b_2 \beta_2+b_3 \beta_3 & c_1 \gamma_1+c_2 \gamma_2+c_3 \gamma_3\end{array}\right|$
The properties of determinants are given below:
If $A$ and $B$ are square matrices of same order:
Formula Name | Formula / Expression | Description |
---|---|---|
Determinant of 2x2 matrix | $\det \begin{bmatrix} a & b \\ c & d \end{bmatrix} = ad - bc$ | Calculates determinant for 2x2 matrix. |
Determinant of 3x3 matrix | $\det A = a_{11}(a_{22}a_{33} - a_{23}a_{32}) - a_{12}(a_{21}a_{33} - a_{23}a_{31}) + a_{13}(a_{21}a_{32} - a_{22}a_{31})$ | Formula for calculating determinant of 3x3 matrix. |
Minor of an element $a_{ij}$ | $M_{ij}$ is determinant after deleting row $i$ and column $j$ from matrix | Used in cofactor expansion. |
Cofactor of element $a_{ij}$ | $C_{ij} = (-1)^{i+j} M_{ij}$ | Sign adjusted minor for determinant expansion. |
Expansion of determinant | $\det A = \sum_{j=1}^n a_{ij} C_{ij}$ (expansion along $i^{th}$ row) | Calculate determinant by cofactor expansion along a row or column. |
Properties of determinants | $\det A = \det A^T$, $\det (kA) = k^n \det A$, $\det (AB) = \det A \cdot \det B$ | Key properties useful in simplification. |
Cramer's Rule (2 variables) | $x = \frac{D_x}{D}, \quad y = \frac{D_y}{D}$ | Solve linear equations using determinants. |
Determinant of inverse matrix | $\det (A^{-1}) = \frac{1}{\det A}$ | Determinant of inverse matrix formula. |
Zero determinant condition | If two rows (or columns) of a matrix are identical, then $\det A = 0$ | Important property for determinant value. |
This section covers all important topics on determinants as per NCERT syllabus and JEE MAIN.
Find recommended books and study resources that explain determinants clearly and provide problems for thorough practice to excel in exams.
Book Title | Author / Publisher | Description |
---|---|---|
NCERT Class 12 Mathematics | NCERT | Official textbook with clear basics and examples on determinants. |
Mathematics for Class 12 | R.D. Sharma | Clear theory with detailed explanations and many solved examples covering determinants and other topics. |
Mathematics for Class 12 | M.L. Aggarwal | Well-structured content with numerous practice problems and conceptual clarity, ideal for board exam preparation. |
Quantitative Aptitude | R.S. Aggarwal | Focuses on aptitude topics including matrices and determinants with many practice questions for competitive exams. |
Higher Algebra | Hall & Knight | Comprehensive coverage of determinants and algebraic properties in detail. |
Access NCERT notes, solutions, and exemplar problems for determinants that simplify the study and help students prepare effectively.
NCERT Maths Notes for Class 12th Chapter 4 - Determinants
NCERT Maths Solutions for Class 12th Chapter 4 - Determinants
NCERT Maths Exemplar Solutions for Class 12th Chapter 4 - Determinants
Explore organized NCERT resources chapter-wise and subject-wise for a systematic understanding.
Resource | Mathematics | Physics | Chemistry | Biology |
---|---|---|---|---|
NCERT Notes | NCERT notes Class 12 Maths | NCERT notes Class 12 Physics | NCERT notes Class 12 Chemistry | NCERT notes Class 12 Biology |
NCERT Solutions | NCERT solutions for Class 12 Mathematics | NCERT solutions for Class 12 Physics | NCERT solutions for Class 12 Chemistry | NCERT solutions for Class 12 Biology |
Practice a variety of questions on matrices to strengthen problem-solving skills and boost exam readiness. Regular practice helps build confidence and mastery of concepts.
Frequently Asked Questions (FAQs)
A minor is the determinant of a smaller matrix formed by removing one row and one column. Cofactors apply a sign to minors based on position.
For a 2x2 matrix $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$, the determinant is $ad - bc$.
Use cofactor expansion: multiply elements of any row or column by their cofactors and sum the results.
A zero determinant means the matrix is singular, and it does not have an inverse.
The determinant of a matrix A is a number that is calculated from the matrix. For a determinant to exist, matrix $A$ must be a square matrix.
If $A=\left[\begin{array}{cccc}a_{11} & a_{12} & \cdots & a_{1 n} \\ a_{21} & a_{22} & \cdots & a_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n 1} & a_{n 2} & \cdots & a_{n n}\end{array}\right]$, then determinant of A is written as |A|=
$
|\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}| .
$
Yes, the value of determinant can be negative.