Scalar Triple Product of Vectors

Scalar Triple Product of Vectors

Komal MiglaniUpdated on 02 Jul 2025, 07:37 PM IST

The Scalar Triple Product means the product of three vectors which result in a scalar number. It means taking the dot product of the vectors with the cross product of the other two vectors. In real life, we use Scalar Triple Product to solve complex problems related to aircraft design and structural analysis.

This Story also Contains

  1. Scalar Triple Product: Definition
  2. Geometrical interpretation
  3. Volume of Tetrahedron
  4. Properties of Scalar Triple Product
  5. Solved Examples Based on Scalar Triple Product of Vectors
Scalar Triple Product of Vectors
Scalar Triple Product of Vectors

In this article, we will cover the concept of Scalar Triple Product. This topic falls under the broader category of Vector Algebra, which is a crucial chapter in Class 11 Mathematics. This is very important not only for board exams but also for competitive exams, which even include the Joint Entrance Examination Main and other entrance exams: SRM Joint Engineering Entrance, BITSAT, WBJEE, and BCECE. A total of twenty-six questions have been asked on this topic in JEE Main from 2013 to 2023 including two in 2019, three in 2020, six in 2021, two in 2022, and eleven in 2023.

Scalar Triple Product: Definition

The scalar triple product (also called the mixed or box product) is defined as the dot product of one of the vectors with the cross product of the other two.

If $\vec{a}, \vec{b}$ and $\vec{c}$ are any three vectors, then their scalar product is defined as $\overrightarrow{\mathbf{a}} \cdot(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})$ and it is denoted as $[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]$.
Scalar Triple Product: Formula
The scalar triple product can be evaluated numerically using any one of the following

$
\begin{array}{ll}
& (\vec{a} \times \vec{b}) \cdot \vec{c}=\overrightarrow{\mathbf{a}} \cdot(\vec{b} \times \overrightarrow{\mathbf{c}})=\overrightarrow{\mathbf{b}} \cdot(\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}})=\overrightarrow{\mathbf{c}} \cdot(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}) \\
\text { i.e. } \quad & {\left[\begin{array}{lll}
\overrightarrow{\mathbf{a}} & \vec{b} & \overrightarrow{\mathbf{c}}
\end{array}\right]=\left[\begin{array}{lll}
\vec{b} & \overrightarrow{\mathbf{c}} & \overrightarrow{\mathbf{a}}
\end{array}\right]=\left[\begin{array}{lll}
\overrightarrow{\mathbf{c}} & \overrightarrow{\mathbf{a}} & \vec{b}
\end{array}\right]=-\left[\begin{array}{lll}
\vec{b} & \overrightarrow{\mathbf{a}} & \overrightarrow{\mathbf{c}}
\end{array}\right]=-\left[\begin{array}{lll}
\overrightarrow{\mathbf{c}} & \vec{b} & \overrightarrow{\mathbf{a}}
\end{array}\right]}
\end{array}
$

The parentheses may be omitted without causing ambiguity since the dot product cannot be evaluated first. If it were, it would leave the cross product of a scalar and a vector, which is not defined.

Scalar Triple Product Proof

If $\overrightarrow{\mathbf{a}}=a_1 \hat{\mathbf{i}}+a_2 \hat{\mathbf{j}}+a_3 \hat{\mathbf{k}}, \overrightarrow{\mathbf{b}}=b_1 \hat{\mathbf{i}}+b_2 \hat{\mathbf{j}}+b_3 \hat{\mathbf{k}}$ and $\overrightarrow{\mathbf{c}}=c_1 \hat{\mathbf{i}}+c_2 \hat{\mathbf{j}}+c_3 \hat{\mathbf{k}}$ then

$
\begin{aligned}
{\left[\begin{array}{lll}
\overrightarrow{\mathbf{a}} & \overrightarrow{\mathbf{b}} & \overrightarrow{\mathbf{c}}
\end{array}\right] } & =(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}) \cdot \overrightarrow{\mathbf{c}}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
a_1 & a_2 & a_2 \\
b_1 & b_2 & b_3
\end{array}\right| \cdot\left(c_1 \hat{i}+c_2 \hat{j}+c_3 \hat{k}\right) \\
& =\left|\begin{array}{ccc}
\hat{i} \cdot\left(c_1 \hat{i}+c_2 \hat{j}+c_3 \hat{k}\right) & \hat{j} \cdot\left(c_1 \hat{i}+c_2 \hat{j}+c_3 \hat{k}\right) & \hat{k} \cdot\left(c_1 \hat{i}+c_2 \hat{j}+c_3 \hat{k}\right) \\
a_1 & a_2 & a_2 \\
b_1 & b_2 & b_3
\end{array}\right|
\end{aligned}
$

NOTE :

1. $\left[\begin{array}{lll}m \vec{a} & \vec{b} & \vec{c}\end{array}\right]=m\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]$, where $m$ is a scalar..
2. $\left[\begin{array}{llll}m_1 \vec{a} & m_2 & \vec{b} & m_3 \vec{c}\end{array}\right]=m_1 m_2 m_3\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]$, where $m_1, m_2, m_3$ are scalares.
3. $\quad\left[\begin{array}{llll}\vec{a}+\vec{b} & \vec{c} & \vec{d}\end{array}\right]=\left[\begin{array}{lll}\vec{a} & \vec{c} & \vec{d}\end{array}\right]+\left[\begin{array}{lll}\vec{b} & \vec{c} & \vec{d}\end{array}\right]$

The necessary and sufficient condition for three non-zero, non-collinear vectors $\vec{a}, \vec{b}$ and $\vec{c}$ is coplanar is that $\left[\begin{array}{lll}\vec{a} & b & \vec{c}\end{array}\right]=0$

Geometrical interpretation

Let vectors $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{c}}$ represent the sides of a parallelepiped $O A, O B$ and OC respectively. Then, $\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}$ is a vector perpendicular to the plane of $\overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{c}}$. Let $\theta$ be the angle between vectors $\overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{c}}$ and $\alpha$ be the angle between $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}$. If $\hat{\mathbf{n}}$ is a unit vector along $\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}$, then $\alpha$ is the angle between $\hat{\mathbf{n}}$ and $\overrightarrow{\mathbf{a}}$.

$\begin{aligned} {[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}] } & =\overrightarrow{\mathbf{a}} \cdot(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}) \\ & =\overrightarrow{\mathbf{a}} \cdot(\mathbf{b} \mathbf{c} \sin \theta \hat{\mathbf{n}}) \\ & =(\mathbf{b} \mathbf{s} \sin \theta)(\overrightarrow{\mathbf{a}} \cdot \hat{\mathbf{n}}) \\ & =(\mathbf{b} \mathbf{s} \sin \theta)(\mathbf{a} \cdot \mathbf{1} \cdot \cos \alpha) \\ & =(\mathbf{a} \cdot \cos \alpha)(\mathbf{b} \mathbf{c} \sin \theta) \\ & =\text { (Height) } \cdot \text { (Area of Base) } \\ & =\text { Volume of parallelepiped }\end{aligned}$

Volume of Tetrahedron

A tetrahedron is a pyramid having a triangular base. Therefore


$
\therefore \quad \text { Volume }=\frac{1}{6}\left[\begin{array}{lll}
\vec{a} & \vec{b} & \vec{c}
\end{array}\right]
$

Properties of Scalar Triple Product

If $\vec{a}, \vec{b}$ and $\vec{c}$ are vectors
1) $(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}), \vec{c}=\overrightarrow{\mathbf{a}} \cdot(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})$ i.e. position of the dot and the cross can be interchanged without altering the product.
2) $\vec{a}, \vec{b}$ and $\vec{c}$ in that order form a right-handed system if $[\vec{a} \vec{b} \quad \vec{c}]_{>0}$;
$\vec{a}, \vec{b}$ and $\vec{c}$ in that order form a lett-handed system if $[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]<0$
3) $[\vec{a} \vec{a} \vec{b}]=0(\vec{a}$ is perpendicular to ( $\vec{a} \times \vec{b}), \vec{a} \cdot(\vec{a} \times \vec{b})=0)$

Recommended Video Based on Scalar Triple Product of Vectors



Solved Examples Based on Scalar Triple Product of Vectors

Example 1: Let $\vec{a}$ and $\vec{b}$ be two vectors, Let $|\vec{a}|=1,|\vec{b}|=4$ and $\vec{a} \cdot \vec{b}=2$. If $\vec{c}=(2 \vec{a} \times \vec{b})-3 \vec{b}$, then the value of $\vec{b} \cdot \vec{c}$ is
[JEE MAINS 2023]
Solution: $\vec{b} \cdot \vec{c}=(2 \vec{a} \times \vec{b}) \cdot \vec{b}-3 \vec{b} \cdot \vec{b}$
$=0-3 b^2$
$=-3 \times 16=-48$
$\vec{b} \cdot \vec{c}=-48$
Hence, the answer is -48
Example 2: If four distinct points with position vectors $\vec{a}, \vec{b}, \vec{c}$ and $d$ are coplanar, then $[\vec{a} \vec{b} \vec{c}]$ is equal to
[JEE MAINS 2023]
Solution: $\vec{a}, \vec{b}, \vec{c}, \vec{d} \rightarrow$ coplanar
$[\overrightarrow{\mathrm{a}} \overrightarrow{\mathrm{b}} \overrightarrow{\mathrm{c}}]=$ ?
$\vec{b}-\vec{a}, \vec{c}-\vec{b}, \vec{d}-\vec{c} \rightarrow$ coplanar
$[\vec{b}-\vec{a} \vec{c}-\vec{b}, \vec{d}-\vec{c}]=0$
$\Rightarrow(\vec{b}-\vec{a}) \cdot((\vec{c}-\vec{b}) \times(\vec{d}-\vec{c}))=0$
$(\vec{b}-\vec{a}) \cdot(\vec{c} \times \vec{b}-\vec{c} \times \vec{a}-\vec{a} \times \vec{d})=0$
$[\mathrm{bcd}]-[\mathrm{bca}]-[\mathrm{bad}]-[\mathrm{acc} d]=0$
$[\vec{a} \vec{b} \vec{c}]=[\vec{d} \vec{c} \vec{a}]+[\vec{b} \vec{d} \vec{a}]+[\vec{c} \vec{d} \vec{b}]$
Hence, the answer is $[\vec{d} \vec{c} \vec{a}]+[\vec{b} \vec{d} \vec{a}]+[\vec{c} \vec{d} \vec{b}]$

Example 3 : Let $\vec{v}=\alpha \hat{\imath}+2 \hat{j}-3 \hat{k}, \vec{w}=2 \alpha \hat{\imath}+\hat{\jmath}-\hat{k}$ and $\vec{u}$ be a vector such that $|\vec{u}|=\alpha>0$. If the minimum value of the scalar triple product $[\vec{u} \vec{v} \vec{w}]$ is $-\alpha \sqrt{3401}$, and $|\vec{u} \cdot \hat{\imath}|^2=\frac{m}{n}$ where $m$ and $n$ are coprime natural numbers, then $m+n_{\text {is equal to }}$
[JEE MAINS 2023]
Solution

$
\begin{aligned}
& \Rightarrow-\alpha \sqrt{1+34 \alpha^2}=-\alpha \sqrt{3401} \\
& \Rightarrow \alpha^2=100 \\
& \Rightarrow \alpha=10
\end{aligned}
$

$\overrightarrow{\mathrm{u}}$ is parallel to $\overrightarrow{\mathrm{v}} \times \overrightarrow{\mathrm{w}} \quad\{\because \alpha>0\}$

$
\begin{aligned}
& \overrightarrow{\mathrm{u}}=\lambda(\overrightarrow{\mathrm{v}} \times \overrightarrow{\mathrm{w}}) \\
& \overrightarrow{\mathrm{u}}=\lambda(\hat{\mathrm{i}}-50 \hat{j}-30 \hat{k})
\end{aligned}
$

$
\begin{aligned}
& |\overrightarrow{\mathrm{u}}|=10 \\
& |\lambda| \sqrt{3401}=10 \\
& |\lambda|=\frac{10}{\sqrt{3401}} \quad \overrightarrow{\mathrm{u}}= \pm \frac{10}{\sqrt{3401}}(\hat{\mathrm{i}}-50 \hat{\mathrm{j}}-30 \hat{\mathrm{k}}) \\
& \left|\overrightarrow{\mathrm{u}} \cdot \hat{\left.\right|^2}\right|^2=\frac{100}{3401}=\frac{\mathrm{m}}{\mathrm{n}} \\
& \mathrm{m}+\mathrm{n}=100+3401=3501
\end{aligned}
$

Hence, the answer is 3501 .

Example 4: If $\vec{a}=2 \hat{i}+\hat{j}+3 \hat{k}, \quad \vec{b}=3 \hat{i}+3 \hat{j}+\hat{k}$ and $\vec{c}=c_1 \hat{i}+c_2 \hat{j}+c_3 \hat{k}$ are coplanar vectors and $\vec{a} \cdot \vec{c}=5, \vec{b} \perp \vec{c}$, then $122\left(c_1+c_2+c_3\right)$ is equal to $\qquad$
[JEE MAINS 2022]

$
\begin{aligned}
& \text { Solution: } \vec{a} \cdot \vec{c}=5 \Rightarrow 2 C_1+C_2+3 C_3=5 \cdots(1) \\
& \vec{b} \perp \vec{c}=3 C_1+3 C_2+C_3=0 \cdots(2) \\
& \begin{aligned}
\vec{a}, \vec{b}, \vec{c} \text { are coplanaı } \Rightarrow & \left|\begin{array}{ccc}
C_1 & C_2 & C_3 \\
2 & 1 & 3 \\
3 & 3 & 1
\end{array}\right|=0 \\
& \Rightarrow-8 \mathrm{C}_1+7 \mathrm{C}_2+3 \mathrm{C}_3=0 \cdots-(3)
\end{aligned}
\end{aligned}
$

$
\begin{aligned}
& \text { Eliminating } \mathrm{C}_3 \text { from (1) \& (3) } \Rightarrow \begin{aligned}
& 10 \mathrm{C}_1-6 \mathrm{C}_1=5---(4) \\
& \text { from (2) \& (3) } \Rightarrow 17 \mathrm{C}_1+2 \mathrm{C}_2=0---(5) \\
& \Rightarrow 51 \mathrm{C}_1+6 \mathrm{C}_2=0---(6) \\
& \Rightarrow 61 \mathrm{C}_1=5 \Rightarrow \mathrm{C}_1=\frac{5}{61}, \mathrm{C}_2=\frac{-1}{2} \times 17 \mathrm{C}_1=\frac{-85}{122} \\
& \mathrm{C}_3=-3\left(\mathrm{C}_1+\mathrm{C}_2\right)
\end{aligned}
\end{aligned}
$

So $C_1+C_2+C_3=-2\left(C_1+C_2\right)=\left(\frac{85}{61}-\frac{10}{61}\right)$

$
\Rightarrow 122\left(\mathrm{C}_1+\mathrm{C}_2+\mathrm{C}_3\right)=75 \times 2=150
$

Hence, the answer is 150 .

Example 5: Let the volume of a parallelopiped whose coterminous edges are given by $\vec{u}=\widehat{i}+\widehat{j}+\lambda \widehat{k}, \vec{v}=\widehat{i}+\widehat{j}+3 \widehat{k}$ and $\vec{w}=2 \widehat{i}+\widehat{j}+\widehat{k}$ be 1 cu. unit. If $\theta$ be the angle between the edges $\vec{u}$ and $\vec{w}$,then cos $\theta$ can be :
Solution: Volume of parallelopiped $=1$

$
\pm 1=\left|\begin{array}{lll}
1 & 1 & \lambda \\
1 & 1 & 3 \\
2 & 1 & 1
\end{array}\right| \Rightarrow=-\lambda+3= \pm 1 \Rightarrow \lambda=2 \text { or } \lambda=4
$

For $\lambda=4 \frac{1}{90}$

$
\cos \theta=\frac{2+1+4}{\sqrt{6} \sqrt{18}}=\frac{7}{6 \sqrt{3}}
$

Hence, the answer is $\frac{7}{6 \sqrt{3}}$

Frequently Asked Questions (FAQs)

Q: How is the scalar triple product used in computational geometry algorithms?
A:
In computational geometry, the scalar triple product is used in various algorithms, including those for determining whether a point is inside a tetrahedron, computing the volume of 3D polyhedra, and in collision detection algorithms for 3D objects. It's also used in mesh generation and in algorithms for computing convex hulls in 3D space.
Q: Can the scalar triple product be generalized to higher dimensions?
A:
While the scalar triple product is specific to 3D space, it can be generalized to higher dimensions through the concept of the determinant. In n-dimensional space, the volume of an n-parallelotope formed by n vectors is given by the determinant of the matrix formed by these vectors.
Q: How does the scalar triple product relate to the concept of Plücker coordinates?
A:
The scalar triple product is used in defining and working with Plücker coordinates, which are used to represent lines in 3D projective space. The Plücker relation, which determines whether six coordinates actually represent a line, can be expressed using scalar triple products.
Q: What is the significance of the scalar triple product in differential geometry?
A:
In differential geometry, the scalar triple product is related to the concept of volume forms. It's used in defining the cross product of vector fields on a 3-manifold and in expressing the curl operator in coordinate-free notation.
Q: How is the scalar triple product used in the study of angular momentum in physics?
A:
In physics, the scalar triple product appears in expressions for angular momentum, particularly in rotational dynamics. It's used in calculating moments of inertia and in deriving equations of motion for rotating bodies.
Q: Can the scalar triple product be used to determine if a vector is perpendicular to a plane?
A:
Yes, the scalar triple product can be used to check if a vector is perpendicular to a plane. If v is the vector in question, and a and b are any two non-parallel vectors lying in the plane, then v is perpendicular to the plane if and only if v·(a×b) = 0.
Q: How does the scalar triple product relate to the concept of reciprocal basis vectors?
A:
In the context of non-orthogonal coordinate systems, the scalar triple product is used to define reciprocal basis vectors. If a, b, c are basis vectors, their reciprocal basis vectors a*, b*, c* are defined such that a*·(b×c) = b*·(c×a) = c*·(a×b) = 1.
Q: What is the relationship between the scalar triple product and the vector product of four vectors?
A:
While the scalar triple product involves three vectors, it's related to the vector product of four vectors in 4D space. In 4D, four vectors a, b, c, d can form a 4D hypervolume, whose magnitude is given by |det([a b c d])|, which is analogous to the 3D scalar triple product.
Q: Can the scalar triple product be used to find the distance from a point to a plane?
A:
Yes, the scalar triple product can be used to calculate the distance from a point to a plane. If n is a normal vector to the plane, p is a point on the plane, and q is the point we're measuring from, then the distance d is given by |n·(q-p)| / |n|, where the numerator is a scalar triple product.
Q: Can the scalar triple product be extended to complex vectors?
A:
Yes, the scalar triple product can be defined for complex vectors. However, some properties change: for complex vectors, a·(b×c) is not necessarily real, and its geometric interpretation becomes more abstract.