Vector Triple Product

Vector Triple Product

Komal MiglaniUpdated on 02 Jul 2025, 07:31 PM IST

The Vector Triple Product means the product of three vectors which result in a Vector. It means taking the cross product of the vectors with the cross product of the other two vectors. In real life, we use Vector Triple Product to solve complex problems related to aircraft design and the volume of parallelepiped.

This Story also Contains

  1. Vector Triple Product: Definition
  2. Derivation of Vector Triple Product
  3. Summary
Vector Triple Product
Vector Triple Product

In this article, we will cover the concept of Vector Triple Product. This topic falls under the broader category of Vector Algebra, which is a crucial chapter in Class 11 Mathematics. This is very important not only for board exams but also for competitive exams, which even include the Joint Entrance Examination Main and other entrance exams: SRM Joint Engineering Entrance, BITSAT, WBJEE, and BCECE. A total of sixteen questions have been asked on this topic in JEE Main from 2013 to 2023 including one in 2019, one in 2020, five in 2021, three in 2022, and four in 2023.

Vector Triple Product: Definition

The Vector Triple Product is defined as the cross product of one of the vectors with the cross product of the other two vectors. It results in the vector. It is expressed as $\overrightarrow{\mathbf{a}} \times(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})$
The resultant of the triple cross vector lies in the plane of the given three vectors.
Formula of Vector Triple Product
For three vectors $\overrightarrow{\mathrm{a}}, \overrightarrow{\mathrm{b}}$ and $\overrightarrow{\mathbf{c}}$ vector triple product is defined as $\overrightarrow{\mathbf{a}} \times(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})$.

$
\vec{a} \times(\vec{b} \times \vec{c})=(\vec{a} \cdot \vec{c}) \cdot \vec{b}-(\vec{a} \cdot \vec{b}) \cdot \vec{c}
$

Derivation of Vector Triple Product


$\vec{p}=\vec{a} \times(\vec{b} \times \vec{c})$ is a vector perpendicular to $\vec{a}$ and $\vec{b} \times \vec{c}$ but $\vec{b} \times \vec{c}$ is a vector perpendicular to the plane of $\vec{b}$ and $\vec{c}$.
Hence, vector $\vec{p}$ must lie in the plane of $\vec{b}$ and $\vec{c}$.
Let $\vec{p}=\vec{a} \times(\vec{b} \times \vec{c})=l \vec{b}+m \vec{c}$
[l,m are scalars]
Taking the dot product of eq (i) with $\vec{a}$, we get

$
\begin{gathered}
\vec{p} \cdot \vec{a}=l(\vec{a} \cdot \vec{b})+m(\vec{a} \cdot \vec{c}) \\
{\left[\begin{array}{l}
\because \vec{a} \times(\vec{b} \times \vec{c}) \text { is } \perp \vec{a} \\
\therefore \vec{a} \times(\vec{b} \times \vec{c}) \cdot \vec{a}=0
\end{array}\right]}
\end{gathered}
$
Therefore,

$
\begin{array}{ll}
\Rightarrow & \vec{p} \cdot \vec{a}=0 \\
\Rightarrow & l(\vec{a} \cdot \vec{b})=-m(\vec{a} \cdot \vec{c}) \\
\Rightarrow & \frac{1}{\vec{a} \cdot \vec{c}}=\frac{-m}{\vec{a} \cdot \vec{b}}=\lambda \\
\Rightarrow & l=\lambda(\vec{a} \cdot \vec{c}) \\
\text { and } & m=-\lambda(\vec{a} \cdot \vec{b})
\end{array}
$

Substituting the value of $l$ and $m$ in Eq . (i), we get

$
\vec{a} \times(\vec{b} \times \vec{c})=\lambda[(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{a} \cdot \vec{b}) \vec{c}]
$
Here, the value of $\lambda$ can be determined by taking specific values of $\vec{a}, \vec{b}$ and $\vec{c}$.

The simplest way to determine $\lambda$ is by taking specific vectors $\vec{a}=\hat{i}, \vec{b}=\hat{i}, \vec{c}=\hat{j}$.

We have,
$
\begin{array}{ll}
& \vec{a} \times(\vec{b} \times \vec{c})=\lambda[(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{a} \cdot \vec{b}) \vec{c}] \\
& \hat{i} \times(\hat{i} \times \hat{j})=\lambda[(\hat{i} \cdot \hat{j}) \hat{i}-(\hat{i} \cdot \hat{i}) \hat{j}] \\
& \hat{i} \times \hat{k}=\lambda[(0) \hat{i}-(1) \hat{j}] \Rightarrow-\hat{j}=-\lambda \hat{j} \\
\therefore \quad & \lambda=1
\end{array}
$

Hence,

$
\vec{a} \times(\vec{b} \times \vec{c})=(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{a} \cdot \vec{b}) \vec{c}
$

1.

$
\begin{aligned}
& \vec{a} \times(\vec{b} \times \vec{c})=(\vec{a} \cdot \vec{c}) \cdot \vec{b}-(\vec{a} \cdot \vec{b}) \cdot \vec{c} \\
& (\vec{a} \times \vec{b}) \times \vec{c}=(\vec{c} \cdot \vec{a}) \cdot \vec{b}-(\vec{c} \cdot \vec{b}) \cdot \vec{a}
\end{aligned}
$

2. In general $\vec{a} \times(\vec{b} \times \vec{c}) \neq(\vec{a} \times \vec{b}) \times \vec{c}$
If $\overrightarrow{\mathbf{a}} \times(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})=(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}) \times \overrightarrow{\mathbf{c}}$ then the vectors $\vec{a}$ and $\vec{c}$

NOTE: are collinear.

Properties of the Vector Triple Product
The vector triple product is a vector quantity.

$
\begin{aligned}
& \vec{a} \times(\vec{b} \times \vec{c}) \neq(\vec{a} \times \vec{b}) \vec{c} \\
& \vec{a} \times(\vec{b} \times \vec{c}) \text { is a vector perpendicular to } \vec{a} \text { and }(\vec{b} \times \vec{c})
\end{aligned}
$

$\vec{a} \times(\vec{b} \times \vec{c})$ is a vector perpendicular to the plane containing $\vec{a}, \vec{b}, \vec{c}$ are three vectors.

Recommended Video Based on Vector Triple Product


Solved Examples Based on Vector Triple Product

Example 1: If $\vec{a}, \vec{b}, \vec{c}$ are three non-zero vectors and $\hat{n}$ is a unit vector perpendicular to $\hat{c}$ such that $\vec{a}=\alpha \vec{b}-\hat{n}(a \neq 0)$ and $\vec{b} \cdot \vec{c}=12$, then $|\vec{c} \times(\vec{a} \times \vec{b})|_{\text {is equal to: }}$
[JEE MAINS 2023]
Solution

$
\begin{aligned}
& \overrightarrow{\mathrm{a}}=\alpha \overrightarrow{\mathrm{b}}-\hat{\mathrm{n}}, \vec{b} \cdot \overrightarrow{\mathrm{c}}=12 \\
& \overrightarrow{\mathrm{c}} \times(\vec{a} \times \vec{b})=(\vec{c} \cdot \vec{b}) \vec{a}-(\vec{c} \cdot \vec{a}) \vec{b} \\
& \overrightarrow{\mathrm{c}} \times(\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}})=12 \vec{a}-(\overrightarrow{\mathrm{c}} \cdot \overrightarrow{\mathrm{b}}) \\
& \because \overrightarrow{\mathrm{a}}=\alpha \overrightarrow{\mathrm{b}}-\mathrm{n}
\end{aligned}
$

$
\vec{c} \cdot \vec{a}=\alpha \overrightarrow{\mathrm{c}} \cdot \vec{b}-\vec{c} \cdot \mathrm{n}
$

$
\vec{c} \cdot \vec{a}=12 \alpha
$

$
\begin{aligned}
& \vec{c} \times(\vec{a} \times \vec{b})=12 \vec{a}-12 \alpha \vec{b} \\
& |\vec{c} \times(\vec{a} \times \vec{b})|=12|\vec{a}-\alpha \vec{b}| \quad[\because \vec{a}-\alpha \vec{b}=-n \text { then }|\vec{a}-\alpha \vec{b}|=1] \\
& \Rightarrow|\vec{c} \times(\vec{a} \times \vec{b})|=12
\end{aligned}
$

$
|\overrightarrow{\mathrm{c}} \times(\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}})|=12
$

Hence, the answer is 12

Example 2: Let $\lambda \in \mathbb{R}, \vec{a}=\lambda \hat{\imath}+2 \hat{\jmath}-3 \hat{k}, \vec{b}=\hat{\imath}-\lambda \hat{\jmath}+2 \hat{k}{ }_{\operatorname{If}}((\vec{a}+\vec{b}) \times(\vec{a} \times \vec{b})) \times(\vec{a}-\vec{b})=8 \hat{\imath}-40 \hat{\jmath}-24 \hat{k}$, then $|\lambda(\vec{a}+\vec{b}) \times(\vec{a}-\vec{b})|^2$ is equal to
Solution

$
\begin{aligned}
& ((\vec{a}+\vec{b}) \times(\vec{a} \times \vec{b}) \times(\vec{a}-\vec{b})-=8 \hat{i}-40 \hat{j}-24 \hat{k} \\
& \Rightarrow(\vec{a} \times(\vec{a} \times \vec{b})+\vec{b} \times(\vec{a} \times \vec{b})) \times(\vec{a}-\vec{b}) \\
& \Rightarrow((\vec{a} \cdot \vec{b}) \vec{a}-(\vec{a} \cdot \vec{a}) \vec{b}+(\vec{b} \cdot \vec{b}) \vec{a}-(\vec{b} \cdot \vec{a}) \vec{b}) \times(\vec{a}-\vec{b}) \\
& \Rightarrow 0-(\vec{a} \cdot \vec{b})(\vec{a} \times \vec{b})-a^2(\vec{b} \times \vec{a})+0-\mathrm{b}^2(\vec{a} \times \vec{b})-(\vec{a} \cdot \vec{b}) \vec{b} \times \vec{a}=8 \hat{\mathrm{i}}-40 \hat{\mathrm{j}}-24 \hat{\mathrm{k}} \\
& \Rightarrow\left(\mathrm{a}^2-\mathrm{b}^2\right)(\vec{a} \times \overrightarrow{\mathrm{b}})=8 \hat{\mathrm{i}}-40 \hat{\mathrm{j}}-24 \hat{\mathrm{k}} \\
& \left(\left(\lambda^2+4+9\right)-\left(1+\lambda^2+4\right)\right)(\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}) \\
& 8(\vec{a} \times \vec{b})=8(\hat{\mathrm{i}}-5 \hat{j}-3 \hat{k}) \\
& \hat{\mathrm{i}}(4-3 \lambda)-\hat{\mathrm{j}}(2 \lambda+3)+\hat{\mathrm{k}}\left(-\lambda^2-2\right)=\hat{\mathrm{i}}-5 \hat{\mathrm{j}}-3 \hat{\mathrm{k}} \\
& \Rightarrow 4-3 \lambda=1 \quad 2 \lambda+3=5 \quad-\lambda^2-2=-3 \\
& 3 \lambda=3 \\
& \lambda=1 \\
& \lambda \\
& \begin{array}{l}
\lambda^2=1
\end{array} \\
& \begin{array}{ll}
\lambda(\vec{a}+\vec{b}) \times(\vec{a}-\vec{b})|=|(\vec{a}+\vec{b}) \times\left.(\vec{a}-\vec{b})\right|^2 \\
\Rightarrow|-\vec{a} \times \vec{b}+\vec{b} \times \vec{a}|^2=|2(\vec{a} \times \vec{b})|^2=4(1+25+9)=140
\end{array}
\end{aligned}
$

Hence, the answer is 140

Example 3: Let $\vec{a}, \vec{b}$ and $\vec{c}$ be three non-zero vectors such that $\vec{b} \cdot \vec{c}=0$ and $\vec{a} \times(\vec{b} \times \vec{c})=\frac{b-\vec{c}}{2}$. If $\vec{d}$ be a vector such that $\vec{b} \cdot \vec{d}=\vec{a} \cdot \vec{b}$, then $(\vec{a} \times \vec{b}) \cdot(\vec{c} \times \vec{d})_{\text {is equal to }}$.
[JEE MAINS 2023]

$
\begin{aligned}
& \text { Solution: }(\overline{\mathrm{a}} \cdot \overline{\mathrm{c}}) \overline{\mathrm{b}}-(\overline{\mathrm{a}} \cdot \overline{\mathrm{b}}) \overline{\mathrm{c}}=\frac{\overline{\mathrm{b}}}{2}-\frac{\overline{\mathrm{c}}}{2} \\
& \overline{\mathrm{a}} \cdot \overline{\mathrm{c}}=\frac{1}{2}, \overline{\mathrm{a}} \cdot \overline{\mathrm{b}}=\frac{1}{2} \\
& \overline{\mathrm{b}} \cdot \overline{\mathrm{d}}=\frac{1}{2} \\
& (\overline{\mathrm{a}} \times \overline{\mathrm{b}}) \cdot(\overline{\mathrm{c}} \times \overline{\mathrm{d}})=\overline{\mathrm{a}} \cdot[\overline{\mathrm{b}} \times(\overline{\mathrm{c}} \times \overline{\mathrm{d}})] \\
& =\overline{\mathrm{a}} \cdot[(\overline{\mathrm{b}} \cdot \overline{\mathrm{d}}) \overline{\mathrm{c}}-(\overline{\mathrm{b}} \cdot \overline{\mathrm{c}}) \overline{\mathrm{d}}] \\
& =\overline{\mathrm{a}} \cdot[\overline{\mathrm{c}} / 2] \\
& =\frac{1}{2}(\overline{\mathrm{a}} \cdot \overline{\mathrm{c}}) \\
& =\frac{1}{4}
\end{aligned}
$

Hence, the answer is $1 / 4$

Example 4: Let $\vec{a}, \vec{b}, \vec{c}$ be three vectors mutually perpendicular to each other and have the same magnitude. If a vector $\vec{r}$ satisfies $\vec{a} \times\{(\vec{r}-b) \times \vec{a}\}+b \times\{(\vec{r}-\vec{c}) \times b\}+\vec{c} \times\{(\vec{r}-\vec{a}) \times \vec{c}\}=0$,then $\vec{r}$ is equal to:
Solution: $|\vec{a}|=|\vec{b}|=|\vec{c}|$ and $\vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{c}=\vec{c} \cdot \vec{a}=0$
Let $\vec{r}=x \vec{a}+y \vec{b}+z \vec{c}$
where $\vec{r} \cdot \vec{a}=x|\vec{a}|^2, \vec{r} \cdot \vec{b}=y|\vec{b}|^2, \vec{r} \cdot \vec{c}=z|\vec{c}|^2$
Give expression is

$
\begin{aligned}
& (\vec{a} \times(\vec{r} \times \vec{a}))-(\vec{a} \times(\vec{b} \times \vec{a}))+\vec{b} \times(\vec{r} \times \vec{b})-\vec{b} \times(\vec{c} \times \vec{b})+ \\
& \vec{c} \times(\vec{r} \times \vec{c})-(\vec{c} \times(\vec{a} \times c))=0 \\
& \Rightarrow(\vec{a} \cdot \vec{r}) \vec{a}-|\vec{a}|^2 \vec{r}-(\vec{a} \cdot \vec{b}) \vec{a}+|\vec{a}|^2 \vec{b}+(\vec{b} \cdot \vec{r}) \vec{b}-|\vec{b}|^2 \vec{r}- \\
& (\vec{b} \cdot \vec{c}) \vec{b}+|\vec{b}|^2 \vec{c}+(\vec{c} \cdot \vec{r}) \vec{c}-|\vec{c}|^2 \vec{r}-(\vec{c} \cdot \vec{a}) \vec{a}+|\vec{c}|^2 \vec{a}=0 \\
& \Rightarrow x|\vec{a}|^2 \vec{a}+y|\vec{b}|^2 \vec{b}+z|\vec{c}|^2 \vec{c}-\vec{r}\left(|\vec{a}|^2+|\vec{b}|^2+|\vec{c}|^2\right)+ \\
& |\vec{a}|^2 \vec{b}+|\vec{b}|^2 \vec{c}+|\vec{c}|^2 \vec{a}=0 \\
& \Rightarrow|\vec{a}|^2(x \vec{a}+y \vec{b}+z \vec{c})-3|\vec{a}|^2 \vec{r}+|\vec{a}|^2(\vec{a}+\vec{b}+\vec{c})=0 \\
& \Rightarrow 3 \vec{r}-\vec{r}=\vec{a}+\vec{b}+\vec{c} \\
& \Rightarrow \vec{r}=\frac{1}{2}(\vec{a}+\vec{b}+\vec{c})
\end{aligned}
$

Hence, the answer is $\frac{1}{2}(\vec{a}+\vec{b}+\vec{c})$

Example 5: Let three vector $\vec{a}, \vec{b}$ and $\vec{c}$ be such that $\vec{c}$ is coplanar with $\vec{a}$ and $\vec{b}, \vec{a} \cdot \vec{b}=7$ and $\vec{b}$ is perpendicular to $\vec{c}$, where $\vec{a}=-\hat{i}+\hat{j}+\hat{k}$ and $\vec{b}=2 \hat{i}+\hat{k}$. Then the value of $2|\vec{a}+\vec{b}+\vec{c}|_{\text {is }}^2$ $\qquad$
[JEE MAINS 2021]
Solution

$
\begin{aligned}
\vec{c} & =\lambda(\vec{b} \times(\vec{a} \times \vec{b})) \\
& =\lambda((\vec{b} \cdot \vec{b}) \vec{b}-(\vec{b} \cdot \vec{a}) \vec{b}) \\
& =\lambda(5(-\hat{i}+\hat{j}+\hat{k})+2 \hat{i}+\hat{k}) \\
& =\lambda(-3 \hat{i}+5 \hat{j}+6 \hat{k}) \\
\vec{c} & \cdot \vec{a}=7 \Rightarrow 3 \lambda+5 \lambda+6 \lambda=7 \\
\Rightarrow & \lambda=\frac{1}{2} \\
\therefore & 2\left|\left(\frac{-3}{2}-1+2\right) \hat{i}+\left(\frac{5}{2}+1\right) \hat{j}+(3+1+1) \hat{k}\right|^2 \\
& =2\left(\frac{1}{4}+\frac{49}{4}+25\right)=25+50=75
\end{aligned}
$

Hence, the answer is 75

Summary

The vector triple product helps us understand how three vectors interact in three-dimensional space. It's used in various fields like mechanics, electromagnetism, and geometry to calculate important quantities like torque, magnetic fields, and volumes. Understanding vector triple product helps us to analyze and solve the problems related to real life.

Frequently Asked Questions (FAQs)

Q: What is the significance of the vector triple product in the study of electromagnetic waves and radiation?
A:
The vector triple product is essential in deriving and understanding electromagnetic wave equations. For instance, the wave equation for the electric field, ∇²E - (1/c²)∂²E/∂t² = 0, can be derived using vector identities involving triple products applied to Maxwell's equations.
Q: What is the role of the vector triple product in the study of plasma physics, particularly in magnetohydrodynamics (MHD)?
A:
In magnetohydrodynamics, the vector triple product appears in the MHD equations, particularly in the Lorentz force term J × B, where J is current density and B is magnetic field. This term is crucial in understanding plasma dynamics and can be expanded using vector triple product identities.
Q: How does the vector triple product relate to the concept of helicity in fluid dynamics and plasma physics?
A:
Helicity, which measures the linkage of vortex lines in a fluid or magnetic field lines in a plasma, is defined as H = ∫v · ω dV for fluids or H = ∫A · B dV for magnetic fields. The evolution of helicity often involves expressions with vector triple products.
Q: What is the significance of the vector triple product in fluid mechanics, particularly in the study of vorticity?
A:
In fluid mechanics, the vector triple product appears in the vorticity transport equation: Dω/Dt = (ω · ∇)v + ν∇²ω, where ω is vorticity and v is velocity. The term (ω · ∇)v can be expressed as a vector triple product, highlighting the importance of this operation in understanding fluid flow.
Q: Can you use the vector triple product to derive the formula for the magnetic field of a current-carrying wire?
A:
Yes, the Biot-Savart law, which gives the magnetic field due to a current element, can be derived using vector triple products. The law states that dB = (μ0/4π) * (I dl × r) / r³, where I is the current, dl is a vector element of the wire, and r is the position vector from the element to the point where the field is calculated.
Q: What is the connection between the vector triple product and the vector potential in electromagnetism?
A:
The vector potential A in electromagnetism is related to the magnetic field B through the curl operation: B = ∇×A. When calculating the force on a moving charge q with velocity v in a magnetic field, we use F = qv×B = qv×(∇×A), which involves a vector triple product.
Q: How does the vector triple product relate to the concept of moment of inertia?
A:
The vector triple product appears in the calculation of the moment of inertia tensor. For a point mass m at position r, the contribution to the moment of inertia tensor is m[r²I - r⊗r], where r⊗r is the outer product. This can be related to the vector triple product through the identity a × (b × c) = (a · c)b - (a · b)c.
Q: How does the vector triple product relate to the concept of torque in physics?
A:
The vector triple product appears in the expression for the torque about a point O due to a force F acting at a point r: τ = r × F. This can be expanded as τ = r × (F × ω), where ω is the angular velocity vector, demonstrating the use of vector triple products in rotational mechanics.
Q: Can the vector triple product be generalized to higher dimensions?
A:
The vector triple product as we know it is specific to three-dimensional space. In higher dimensions, similar concepts are explored through exterior algebra and the wedge product, which generalize the ideas of cross products and triple products to n-dimensional spaces.
Q: What is the cyclic property of vector triple products?
A:
The cyclic property states that a · (b × c) = b · (c × a) = c · (a × b). This property is useful in manipulating and simplifying complex vector expressions involving triple products.