Summation of series in trigonometry involves using specific formulas to calculate sums of sine, cosine, and other trigonometric series efficiently. Key concepts include the summation of trigonometric series formula, product of cosine series formula, and cos series summation formula in mathematics. With examples and practice questions, students can master the summation of algebraic and trigonometric series. In this article, we will explain all essential formulas and methods clearly.
This Story also Contains
In trigonometry, there are six fundamental trigonometric functions. These functions represent ratios of sides in a right-angled triangle:
Hypotenuse: the longest side of the triangle
Base: the side adjacent to the chosen angle
Perpendicular: the side opposite the chosen angle
The six basic trigonometric functions are sine (sin), cosine (cos), tangent (tan), secant (sec), cosecant (cosec), and cotangent (cot). They allow us to calculate various values in triangles by comparing these side lengths.
Using the sides of a right-angled triangle, we can calculate the values of the trigonometric functions with the following formulas:
$\sin \theta = \frac{\text{Perpendicular}}{\text{Hypotenuse}}$
$\cos \theta = \frac{\text{Base}}{\text{Hypotenuse}}$
$\tan \theta = \frac{\text{Perpendicular}}{\text{Base}}$
$\sec \theta = \frac{\text{Hypotenuse}}{\text{Base}}$
$\text{cosec} \theta = \frac{\text{Hypotenuse}}{\text{Perpendicular}}$
$\cot \theta = \frac{\text{Base}}{\text{Perpendicular}}$
These formulas involving trigonometric ratios form the foundation for solving problems in trigonometry and are widely used in algebraic and trigonometric series calculations.
Below are the important trigonometric series formulas, including sine and cosine series, for quick reference and easy application in Class 11 problems.
The sum of a sine series with angles in arithmetic progression (A.P.) is:
$S = \sin \alpha + \sin (\alpha + \beta) + \sin (\alpha + 2\beta) + \cdots + \sin (\alpha + (n-1)\beta) = \frac{\sin \frac{n\beta}{2} \cdot \sin \left[\alpha + (n-1)\frac{\beta}{2}\right]}{\sin \frac{\beta}{2}}$
Let $S = \sin \alpha + \sin (\alpha + \beta) + \sin (\alpha + 2\beta) + \cdots + \sin (\alpha + (n-1)\beta)$
Multiply both sides by $2 \sin \frac{\beta}{2}$:
$2S \sin \frac{\beta}{2} = 2\sin\alpha \sin \frac{\beta}{2} + 2\sin(\alpha+\beta) \sin \frac{\beta}{2} + \cdots + 2\sin(\alpha+(n-1)\beta) \sin \frac{\beta}{2}$
Using the identity $2 \sin X \sin Y = \cos(X-Y) - \cos(X+Y)$, we get:
$2 \sin \alpha \sin \frac{\beta}{2} = \cos\left(\alpha - \frac{\beta}{2}\right) - \cos\left(\alpha + \frac{\beta}{2}\right)$
$2 \sin (\alpha + \beta) \sin \frac{\beta}{2} = \cos\left(\alpha + \frac{\beta}{2}\right) - \cos\left(\alpha + \frac{3\beta}{2}\right)$
$2 \sin (\alpha + 2\beta) \sin \frac{\beta}{2} = \cos\left(\alpha + \frac{3\beta}{2}\right) - \cos\left(\alpha + \frac{5\beta}{2}\right)$
$\cdots$
$2 \sin (\alpha + (n-1)\beta) \sin \frac{\beta}{2} = \cos\left[\alpha + (2n-3)\frac{\beta}{2}\right] - \cos\left[\alpha + (2n-1)\frac{\beta}{2}\right]$
Adding all terms:
$2 \sin \frac{\beta}{2} , S = \cos\left(\alpha - \frac{\beta}{2}\right) - \cos\left[\alpha + (2n-1)\frac{\beta}{2}\right]$
Using the sine formula for difference of cosines:
$2 \sin \frac{\beta}{2} , S = 2 \sin\left[\alpha + (n-1)\frac{\beta}{2}\right] \sin \frac{n\beta}{2}$
$\Rightarrow S = \frac{\sin \frac{n\beta}{2} \cdot \sin \left[\alpha + (n-1)\frac{\beta}{2}\right]}{\sin \frac{\beta}{2}}$
Replacing $\alpha$ by $\frac{\pi}{2} + \alpha$ in the sine series formula, we get:
$\cos \alpha + \cos (\alpha + \beta) + \cos (\alpha + 2\beta) + \cdots + \cos (\alpha + (n-1)\beta) = \frac{\sin \frac{n\beta}{2}}{\sin \frac{\beta}{2}} \cdot \cos\left[\alpha + (n-1)\frac{\beta}{2}\right]$
Trigonometric series often involve products of sine and cosine functions. Using product-to-sum formulas simplifies these series and makes summation easier. These formulas are widely used in summation of series in trigonometry, cos series summation, and other advanced problems.
The product of cosine functions can be converted into a sum using the formula:
$\cos A \cos B = \frac{1}{2}[\cos(A+B) + \cos(A-B)]$
Application:
This formula helps in summing series like $\cos \alpha \cos (\alpha+\beta) + \cos (\alpha+2\beta) \cos (\alpha+3\beta)$ efficiently. It is commonly used in summation of trigonometric series questions for Class 11 and competitive exams.
Similarly, sine products can be transformed using:
$\sin A \sin B = \frac{1}{2}[\cos(A-B) - \cos(A+B)]$
$\sin A \cos B = \frac{1}{2}[\sin(A+B) + \sin(A-B)]$
These formulas are extremely useful for trigonometric series examples where angles are in arithmetic progression, allowing conversion of complex products into simpler sums.
Specific cosine series formulas help in calculating sums like:
$\sum_{r=1}^{n} \cos r\theta = \frac{\sin \frac{n\theta}{2} \cdot \cos \frac{(n+1)\theta}{2}}{\sin \frac{\theta}{2}}$
$\sum_{r=1}^{n} \cos^2 r\theta = \frac{n}{2} + \frac{1}{2}\sum_{r=1}^{n} \cos 2r\theta$
These formulas are critical in summation of series in trigonometry class 11 and in solving problems for cos series summation formula applications.
Efficient summation of trigonometric series requires strategic techniques. Using these methods simplifies complex algebraic and trigonometric series and saves time in exams.
For series with angles in arithmetic progression (A.P.), the sum of sine or cosine series can be calculated using:
$\sum_{r=1}^{n} \sin (\alpha + (r-1)\beta) = \frac{\sin \frac{n\beta}{2} \cdot \sin \left[\alpha + (n-1)\frac{\beta}{2}\right]}{\sin \frac{\beta}{2}}$
$\sum_{r=1}^{n} \cos (\alpha + (r-1)\beta) = \frac{\sin \frac{n\beta}{2} \cdot \cos \left[\alpha + (n-1)\frac{\beta}{2}\right]}{\sin \frac{\beta}{2}}$
These formulas are widely used in summation of trigonometric series questions and trigonometric series examples.
For geometric progression (G.P.) of trigonometric terms, the series can be summed using:
$\sum_{r=0}^{n-1} a r^k = a + ar + ar^2 + \cdots + ar^{n-1} = a \frac{1-r^n}{1-r}$,
where $r$ can be $\cos \theta$ or $\sin \theta$. This technique is useful in cos series summation formula and trigonometric series formula derivations.
Some problems mix algebraic coefficients with trigonometric terms:
$\sum_{r=1}^{n} r \sin r\theta, \quad \sum_{r=1}^{n} r \cos r\theta$
Mastering summation of series in trigonometry not only requires learning formulas but also understanding common pitfalls. Avoiding these mistakes ensures accurate solutions in Class 11 trigonometric series problems and competitive exams.
One of the most frequent errors is applying the wrong formula to a series. To prevent this:
Check if the series is arithmetic (A.P.) or geometric (G.P.).
Identify whether it is a sine series, cosine series, or mixed series.
Use the corresponding formula:
For example:
$\sum_{r=1}^{n} \sin (\alpha + (r-1)\beta) = \frac{\sin \frac{n\beta}{2} \cdot \sin \left[\alpha + (n-1)\frac{\beta}{2}\right]}{\sin \frac{\beta}{2}}$
$\sum_{r=1}^{n} \cos (\alpha + (r-1)\beta) = \frac{\sin \frac{n\beta}{2} \cdot \cos \left[\alpha + (n-1)\frac{\beta}{2}\right]}{\sin \frac{\beta}{2}}$
Applying these formulas incorrectly is a major source of errors in trigonometric series examples.
Another common mistake is misinterpreting the upper and lower limits of the series.
Ensure the first term corresponds to $r=1$ or $r=0$ as given.
Check if the last term is $n$ or $n-1$.
For example, the series:
$\sum_{r=0}^{n-1} \sin (\alpha + r\beta)$
differs from:
$\sum_{r=1}^{n} \sin (\alpha + (r-1)\beta)$
Even a small misplacement of the limits can lead to incorrect results in cos series summation formula applications.
Handling negative angles and alternating signs is another source of mistakes:
Remember that $\sin(-\theta) = -\sin \theta$ and $\cos(-\theta) = \cos \theta$.
For alternating series like $\sum_{r=1}^{n} (-1)^{r-1} \sin r\theta$, carefully account for the sign of each term.
When using product-to-sum formulas, track the positive and negative signs:
$\sin A \sin B = \frac{1}{2}[\cos(A-B) - \cos(A+B)]$
Neglecting the sign can completely change the sum of a series, affecting Class 11 trigonometric series examples and competitive exam solutions.
Example 1: The value of $\sin \left(1^{\circ}\right)+\sin \left(3^{\circ}\right) \ldots+\sin \left(87^{\circ}\right)+\sin \left(89^{\circ}\right)$ is
1) $\frac{1}{\sin \left(1^{\circ}\right)}$
2) $\frac{1}{2 \sin \left(1^{\circ}\right)}$
3) $\frac{1}{2 \sin \left(2^{\circ}\right)}$
4) None of these
Solution:
$
\sin \left(1^{\circ}\right)+\sin \left(3^{\circ}\right) \ldots+\sin \left(87^{\circ}\right)+\sin \left(89^{\circ}\right)
$
Here $a=1^{\circ}, b=2^{\circ}$ and $n=45$
$
\begin{aligned}
& \text { Sum }=\frac{\sin \left(a+(n-1) \frac{b}{2}\right) \sin \frac{n b}{2}}{\sin \frac{b}{2}} \\
& =\frac{\sin \left(1+44 * \frac{2}{2}\right) \sin \frac{45 * 2}{2}}{\sin \frac{2}{2}} \\
& =\frac{1}{2 \sin \left(1^{\circ}\right)}
\end{aligned}
$
Hence, the answer is option 2.
Example 2: The sum of $\cos \left(1^{\circ}\right)+\cos \left(3^{\circ}\right) \ldots+\cos \left(87^{\circ}\right)+\cos \left(89^{\circ}\right)$ is
1) $\frac{1}{2 \cos \left(1^{\circ}\right)}$
2) $\frac{1}{\sin \left(1^{\circ}\right)}$
3) $\frac{1}{2 \sin \left(1^{\circ}\right)}$
4) None of these
Solution:
$
\cos \left(1^{\circ}\right)+\cos \left(3^{\circ}\right) \ldots+\cos \left(87^{\circ}\right)+\cos \left(89^{\circ}\right)
$
Here $a=1^{\circ}, b=2^{\circ}$ and $n=45$
$
\begin{aligned}
& \text { Sum }=\frac{\cos \left(a+(n-1) \frac{b}{2}\right) \sin \frac{n b}{2}}{\sin \frac{b}{2}} \\
& =\frac{\cos \left(1+44 * \frac{2}{2}\right) \sin \frac{45 * 2}{2}}{\sin \frac{2}{2}} \\
& =\frac{1}{2 \sin \left(1^{\circ}\right)}
\end{aligned}
$
Hence, the answer is option 3 .
Example 3: The value of $\cos \frac{\pi}{2^2} \cdot \cos \frac{\pi}{2^3} \cdot \ldots \cdot \cos \frac{\pi}{2^{10}} \cdot \sin \frac{\pi}{2^{10}} \text { is: }$
Solution:
$\cos \frac{\pi}{2^2} \cdot \cos \frac{\pi}{2^3} \cdot \cos \frac{\pi}{2^4} \cdot \ldots \ldots \ldots \ldots \cos \frac{\pi}{2^{10}} \cdot \sin \frac{\pi}{2^{10}}$
Here, $A=\frac{\pi}{2^{10}}, n=9$
So the given expression can be written as:
$\frac{\sin \left(2^9 \cdot \frac{\pi}{2^{10}}\right)}{2^9 \sin \left(\frac{\pi}{2^{10}}\right)} \times \sin \left(\frac{\pi}{2^{10}}\right)$
$=\frac{1}{2^9} \sin \frac{\pi}{2}$
$=\frac{1}{512}$
Example 4: The value of $\cos \frac{\pi}{19}+\cos \frac{3 \pi}{19}+\cos \frac{5 \pi}{19}+\ldots . .+\cos \frac{17 \pi}{19}$ is equal to (up to one decimal point):
1) $0.5$
2) $0$
3) $1$
4) $0.7$
Solution:
The trigonometric ratios for angles in all the four quadrants.
$
\begin{aligned}
& \cos \frac{\pi}{19}+\cos \frac{3 \pi}{19}+\cos \frac{5 \pi}{19}+\ldots .+\cos \frac{17 \pi}{19} \\
& \text { Here, } A=\frac{\pi}{19}, D=\frac{2 \pi}{19}, n=9 \\
& \because \cos A+\cos (A+D)+\cos (A+2 D)+\ldots \ldots . .+\cos (A+(n-1) D) \\
& =\frac{\sin \left(\frac{n D}{2}\right)}{\sin \frac{D}{2}} \cdot \cos \left(\frac{2 A+(n-1) D}{2}\right)=\frac{\sin 9 \times \frac{\pi}{19}}{\sin \frac{\pi}{19}} \times \cos \left(\frac{\frac{\pi}{19}+\frac{17 \pi}{19}}{2}\right) \\
& =\frac{\sin \frac{9 \pi}{19}}{\sin \frac{\pi}{19}} \times \cos \frac{9 \pi}{19} \\
& =\frac{1}{2} \cdot \frac{\sin \left(\frac{18 \pi}{19}\right)}{\sin \frac{\pi}{19}}=\frac{1}{2} \cdot \frac{\sin \frac{\pi}{19}}{\sin \frac{\pi}{19}}=\frac{1}{2}
\end{aligned}
$
Example 5: The value of the sum $\sum_{k=1}^n\left(\tan 2^{k-1} \cdot \sec 2^k\right)$ is
1) $\tan 2^n$
2) $\tan 2^n-1$
3) $\tan 2^n-\tan 1$
4) $\cos 2^n-\cos 2$
Solution:
$
\sum_{k=1}^n\left(\tan 2^{k-1} \cdot \sec 2^k\right)
$
$
\begin{aligned}
& \text { As } \sec \left(2.2^{k-1}\right)=\frac{1}{\cos \left(2.2^{k-1}\right)} \\
& =\sum_{k=1}^n \tan 2^{k-1} \times \frac{1+\tan ^2 2^{k-1}}{1-\tan ^2 2^{k-1}} \\
& =\sum_{k=1}^n\left(\frac{\tan (2)^{k-1}\left[2-1+\tan ^2 2^{k-1}\right]}{1-\tan ^2 2^{k-1}}\right) \\
& =\sum_{k=1}^n\left(\frac{2 \tan 2^{k-1}}{1-\tan ^2 2^{k-1}}-\tan (2)^{k-1}\right) \\
& =\sum_{k=1}^n\left(\tan 2^k-\tan 2^{k-1}\right) \\
& =\tan 2-\tan (1)+\tan 2^2-\tan 2+\ldots \tan 2^n-\tan 2^{n-1} \\
& =\tan 2^n-1
\end{aligned}
$
Hence, the answer is the option 3.
Below is the list of topics related to the summation of series in trigonometry for easy reference and practice.
NCERT resources for Class 11 Trigonometric Functions provide comprehensive study material, including Chapter 3 notes, solutions, and Exemplar answers. These resources help students practice summation of trigonometric series, strengthen concepts, and excel in exams.
NCERT Class 11 Chapter 3 - Trigonometric Functions Notes
NCERT Class 11 solutions for Chapter 3 - Trigonometric Functions
NCERT Exemplar solutions for Class 11 Chapter 3 - Trigonometric Functions
Practice questions on summation of series in trigonometry help students apply formulas, solve sine and cosine series problems, and master Class 11 trigonometric series examples efficiently.
Summation Of Series In Trigonometry - Practice Question
We have provided the list of practice questions based on the following topics:
Frequently Asked Questions (FAQs)
The summation of a series is the process of adding all terms in a sequence, including arithmetic, geometric, and trigonometric series, to find their total sum.
The formula of a series depends on the type:
Arithmetic series (A.P.): $S_n = \frac{n}{2}[2a + (n-1)d]$
Geometric series (G.P.): $S_n = a \frac{1-r^n}{1-r}$
Trigonometric series: Use sine and cosine summation formulas.
The sum formula in trigonometry gives the total of series with angles in A.P.:
$\sum_{r=1}^{n} \sin (\alpha + (r-1)\beta) = \frac{\sin \frac{n\beta}{2} \cdot \sin \left[\alpha + (n-1)\frac{\beta}{2}\right]}{\sin \frac{\beta}{2}}$
$\sum_{r=1}^{n} \cos (\alpha + (r-1)\beta) = \frac{\sin \frac{n\beta}{2} \cdot \cos \left[\alpha + (n-1)\frac{\beta}{2}\right]}{\sin \frac{\beta}{2}}$
To solve the summation of trigonometric functions, use formulas for sine series, cosine series, product-to-sum identities, and apply arithmetic progression techniques to simplify the series.
The 7 basic trigonometry formulas are: $\sin \theta, \cos \theta, \tan \theta, \cosec \theta, \sec \theta, \cot \theta,$ and the Pythagorean identity. These are essential for Class 11 trigonometric series problems.